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ABSTRACT

As a result of human activities, forests and rangelands across the globe have undergone dramatic changes that have
fundamentally altered ecosystem processes. Examples of these kinds of transformational changes include increasingly hot
and extensive forest fires, die-off over vast areas of forest from insect infestations, large-scale encroachment of rangelands by
woody plants and non-native invasive plants, and desertification. These changes have accelerated in pace, scale and magnitude
in recent decades and have the potential to alter water, energy, and biogeochemical cycles in important but not fully understood
ways. The related disciplines of ecohydrology and watershed management are being shaped and transformed by the need to
understand the ecohydrological consequences of transformative landscape change as well as the need to mitigate and manage

for these changes. Copyright © 2010 John Wiley & Sons, Ltd.

KEY WORDS woody plant encroachment; degradation; invasive species; forest die-off

Received 12 November 2009; Accepted 12 November 2009

INTRODUCTION

We have entered an era that is increasingly dominated by
transformative change. As a result of human activities
(Steffen et al., 2007; Steffen, 2008), our forests and
rangelands are changing at an unprecedented rate (Bonan,
2008; Jackson et al., 2008). Understanding how these
changes affect the water cycle is an urgent need and will
be a major challenge for ecohydrology and watershed
management in the 21% century.

By transformative change, I am referring to pro-
found or radical changes to the earth’s surface that fun-
damentally alter ecosystem processes. Some of these
changes are brought about by intentional decisions by
society—such as urbanization, agricultural conversion,
and afforestation (Foley et al., 2005; Scanlon et al.,
2007; Stonestrom et al., 2009). Others—those I wish
to emphasize—are unintentional and often unanticipated
environmental and land-cover changes. Examples include
the increasingly hot and extensive forest crown fires, die-
off over vast areas of forest from insect infestations,
large-scale encroachment of grasslands by woody and
invasive plants, and increasing losses of land to desertifi-
cation. Although recognized as important for some time,
in recent decades these unintentional changes have accel-
erated in pace, magnitude, and scale (Ryan et al., 2008a).
Collectively they have profound implications for water
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and biogeochemical cycles (Huxman et al., 2005; Camp-
bell et al., 2009), but these implications are not fully
understood.

The focus of wildland watershed management has tra-
ditionally been to protect and maintain water resources
through good land management—mitigating, if you will,
the effects of land-cover changes that resulted from inten-
tional activities such as forest-harvesting, road-building,
grazing, and recreation (Brooks et al., 2003). This man-
agement strategy is prescriptive and anticipatory, and is
still important; but increasingly, watershed managers are
being forced to be reactive—that is, to respond to the
unanticipated alteration of ecosystems by unintentional
transformative change. This shift in direction is seen
globally, and will continue. Examples of such reactive
management include South Africa’s $100 million-per-
year programme to remove invasive species in an effort
to save water (Koenig, 2009) and the massive expenditure
of resources in the United States for preventing and com-
bating wildfires as well as restoring watersheds after fires
(United States Government Accountability Office, 2007).

The other change that has occurred in watershed man-
agement is the general acknowledgement that managing
landscapes for increased water yield at large scales is sim-
ply not practical (and, to be frank, almost never works).
A recent review by the National Academy of Sciences
(2008) supports this conclusion, stating that under such
a management strategy, (1) increases in water yield are
small and unsustainable; (2) water quality can be dimin-
ished; (3) there is little return during dry periods; and
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(4) the size of the area needing to be treated is pro-
hibitively large.

The gradual recognition of the shortcomings of this
strategy, both within and outside the profession, has
robbed the watershed management effort of some of
the vitality it displayed in the 1960s, 1970s, and early
1980s. And—judging by student numbers and profes-
sional opportunities—it is fair to say that the profession
has been in decline for some time. I believe that this
trend will be reversed because of the urgency of address-
ing the watershed challenges brought about by transfor-
mative landscape change. It is the need to meet these
challenges that is redefining and reinvigorating the dis-
cipline of watershed management. (The emergence and
growing awareness of ecohydrology is evidence that this
is already happening.) Further, the tremendous research
and development work that went into the effort to manage
watersheds for increased water yield will provide a solid
foundation for understanding and addressing the effects
of transformative change on the water cycle.

TRANSFORMATIVE CHANGE AND THE WATER
CYCLE—EXAMPLES ALONG AN ELEVATION
GRADIENT

Transformative ecosystem change is occurring every-
where (Hooke, 2000), and a comprehensive review is
well beyond the scope of this paper. Instead I will select
a few examples, mainly from western North America.
These are organized according to a hypothetical elevation
gradient, from high to low—which not only highlights
the extensive nature of transformative change but also,
by facilitating comparisons, may contribute to the effort
to (1) understand the ecohydrological consequences and
(2) develop effective management strategies. For exam-
ple, transformative landscape change in higher-elevation
landscapes is driven mainly by a changing climate and is
more recent than in lower-elevation landscapes, where the
principal driver has been changes in land-use activities.

High elevations—a changing snow regime

Transformative ecosystem change is occurring at higher
and higher elevations, primarily in response to a warm-
ing climate. The changes include accelerated melting of
glaciers (Xu et al., 2009), modified snow regimes (Bar-
nett et al., 2008), and a shifting tree line (Butler ef al.,
2009). Of particular concern, in relation to water supply,
is how these changes will affect the timing and amount
of streamflow. In the western United States, where a
large percentage of the water supply is generated from
high-elevation areas, the effects of modified snow hydrol-
ogy are already being seen. Snow makes up a smaller
percentage of precipitation, and spring snowmelt begins
earlier—the net result being lower total flows and greatly
diminished flow in the summer and fall (Stewart et al.,
2005; Stewart, 2009). These changes in streamflow have
dramatic implications for water resource management in
the western United States and other semi-arid regions
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where snowmelt is the primary source of streamflow
(Milly et al., 2005, 2008).

Midlands—forests under stress

Forests worldwide are under tremendous pressure from
over-utilization, climate change, and invasive species
(Bonan, 2008). In the western United States, forests are
being radically transformed by two related phenomena:
increasing wildfires and tree mortality by insect damage
(Ryan et al., 2008a).

Although fires are a natural part of these forests, it
appears that the types of fires large enough to devastate
entire stands of trees are increasing. A warming climate
is largely responsible, although past land-management
policies have contributed as well (Swetnam et al., 1999;
Westerling et al., 2006). The warmer mid-elevation tem-
peratures result in smaller snowpacks and spring and
summer conditions that render these forests more suscep-
tible to destructive crown fires. As the climate continues
to warm, fires of this kind will only increase in the future
(Ryan et al., 2008a). The hydrological response to forest
fires is well documented. Both runoff and sediment loads
generally increase significantly following fires (Moody
et al., 2008; Moody and Martin, 2009).

No example better illustrates how transformative envi-
ronmental change is forcing management into a more
reactive mode. Billions of dollars have been spent in
trying to prevent wildfires, combat wildfires, and reha-
bilitate landscapes following wildfire (Stokstad, 2008).
The success of this strategy has been vigorously debated
(Wuerthner, 2006).

The second, important example of transformative land-
scape change in forests has been the large-scale die-off of
trees (mostly pine) in western North America, owing to a
combination of water stress and insect infestations (Logan
et al., 2003; van Mantgem et al., 2009; Allen ef al., in
press). Insect outbreaks have been facilitated by years
of low precipitation and relatively mild winters. Climate
variability and, in particular, the extent and frequency
of drought have significant and potentially long-lasting
effects on the structure and composition of forest stands:
killing some species, making trees more susceptible to
insect infestation, and increasing the likelihood of fires
(Breshears, 2005; Allen, 2007; Ryan et al., 2008b; Bres-
hears et al., 2009). The recent dramatic rise in forest
mortality is most certainly related to changes in tem-
perature and precipitation (van Mantgem et al., 2009),
and the extent of the affected areas is enormous (Raffa
et al., 2008). Some have suggested that most, if not all,
of the lodgepole pine forests from Mexico to Canada will
eventually succumb.

The magnitude of the current forest mortality phe-
nomenon is unprecedented in recent history and at
present, the ecohydrological consequences of these
changes are largely unknown. An extrapolation of some
early watershed work that examined the effects of timber
harvesting on water yield suggests that regional stream-
flows could increase as a result of forest die-off (Stednick,
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1996). On the other hand, if snow accumulation contin-
ues to decline in these mid-elevation forests, the expected
increases in streamflow may not materialize.

Low elevations—evolving rangelands

Rangelands are found mainly at lower elevations, at least
in the American West. The landscapes at these elevations
have been the object of the most long-term and intensive
use by humans, and human activity has been a much
larger force of transformative change than changes in
climate. On rangelands in particular, which have a long
history of transformative change, the pace of change is
only accelerating. Drivers of change include overgrazing
(Asner et al., 2004; Reynolds et al., 2007), invasion by
non-native species (Masters and Sheley, 2001)(Wilcox
2007; Nagler et al., 2008; Stromberg et al., 2009) and
atmospheric change (Polley et al., 2006). The resulting
changes on rangelands can be categorized primarily
as three interrelated types: woody plant encroachment,
invasive species, and desertification (Wilcox and Thurow,
2006).

In a process often described as ‘woody plant encroach-
ment,” large tracts of grasslands and savannas have been
converted to woodlands. This conversion has resulted
from a combination of factors, including overgrazing,
reduction in fire frequency, and increases in greenhouse
gases (Archer, 1994; Scholes and Archer, 1997; Archer
et al., 2001; Van Auken, 2009). The ecohydrological
implications of this large-scale transformation are not
fully understood—or in some cases are misunderstood
(Huxman et al., 2005; Newman et al., 2006). There is a
good evidence that a shift from grasses to shrubs leads
to a decline in groundwater recharge, but not at a level
that would be important for water supply (Scanlon et al.,
2005). In spite of the common perception that expansion
of shrublands leads to appreciable changes in streamflow,
there is little if any evidence that this is the case—unless
degradation or desertification processes are taking place
as well (Wilcox et al., 2006). Under degraded conditions,
surface runoff will generally be higher than under non-
degraded ones (Wilcox et al., 2008).

Another dramatic example of transformative landscape
change is the invasion of native rangelands by non-native
species (Bradley et al., 2009). These include forbs such
as leafy spurge (Euphorbia esula) and spotted knap-
weed (Centaurea biebersteinii); grasses such as cheat-
grass (Bromus tectorum), buffelgrass grass (Pennisetum
ciliare), Lehmann lovegrass (Eragrostis lehmanniana),
and King Ranch bluestem (Bothriochloa ischaemum
var. songarica); and riparian shrubs such as salt cedar
(Tamarix sp.) and Russian Olive (Elaeagnus angustifo-
lia). All of these are potentially ‘transformative species’,
capable of altering fundamental ecosystem processes
(Evans et al., 2001). The invasive annual grasses in
particular, with their substantial and highly flammable
fuel loads, can alter fire regimes (Melgoza et al., 1990;
Knapp, 1996; Franklin et al., 2006). To date there has
been relatively little work examining the large-scale
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effects of invasive forbs and grasses on the water cycle.
One possible (but so far unconfirmed) effect would be
increased groundwater recharge in areas where shrubs are
replaced by grasses (Seyfried and Wilcox, 2006; Norton
et al., 2008; Boxell and Drohan, 2009).

Yet another example of transformative landscape
change is seen in semiarid riparian zones of the United
States that have been invaded by exotic shrubs such
as salt cedar (Tamarix sp.). The causes and conse-
quences of the expansion of salt cedar have been much
debated (Stromberg et al., 2009), but a consensus seems
to be building that the greatly altered flow regimes of
many river systems in the American Southwest is largely
responsible (Glenn and Nagler, 2005). Views concern-
ing the hydrological implications of this transformation
have been evolving as well. Whereas early work indicated
that the costs of shrub expansion were huge in terms
of lost water and increased flooding (Zavaleta, 2000),
more recent work suggests that there is relatively little
potential for water savings through control or eradication
of salt cedar (Glenn and Nagler, 2005; Wilcox et al.,
2006; Owens and Moore, 2007; Nagler et al., 2008).
Especially if the salt cedar is replaced by native shrubs,
gains in streamflow are likely to be negligible (Wilcox
et al., 2006). Still, in spite these recent findings, public
pressure on land-management agencies to restore ripar-
ian landscapes altered by exotic shrubs remains strong
(Shafroth and Briggs, 2008). It seems certain, however,
that management strategies will shift away from attempts
at eradication and towards managing flow regimes to
give native species a competitive advantage (Rood et al.,
2005; Richardson et al., 2007).

Finally, the most extensive, persistent, and perhaps
intractable example of transformative change on range-
lands is the process of desertification (Okin et al., 2009).
By some estimates, up to 20% of drylands are already in
a degraded state (Reynolds et al., 2007). In some loca-
tions, such as the Mediterranean, the degradation process
began centuries ago (Brandt and Thornes, 1996). In oth-
ers it is a relatively recent phenomenon and seems to be
accelerating, especially in the developing world (Asner
et al., 2004). Undeniably, the ecohydrological conse-
quences of desertification for the water, sediment, and
biogeochemical cycles are enormous (Dregne, 2000), as
are those for the climate itself (Asner and Heidebrecht,
2005; Sivakumar, 2007). Even so, with respect to spe-
cific consequences for the water cycle, there is much we
do not know—at larger scales in particular. For instance,
we know surprisingly little about the effects (if any) of
desertification and degradation on river flows (Wilcox,
2007). One of the best documented examples of large-
scale hydrological changes as a result of land degradation
are the increases in regional runoff and streamflows in the
Sahel (Leblanc et al., 2008; Favreau et al., 2009).

CONCLUSION

The emerging discipline of ecohydrology and the more
established one of watershed management are intimately
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coupled. Both disciplines are being shaped and trans-
formed by the urgent need to understand the ecohydro-
logical consequences of transformative landscape change
as well as devising strategies for mitigating them. The
rich and diverse research legacy examining the relation-
ship between vegetation management and water yield will
provide a solid foundation for meeting these future chal-
lenges.
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