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ABSTRACT 
 

The Effects of Juniper Removal on Rainfall Partitioning  

in the Edwards Aquifer Region:  Large-Scale Rainfall 

Simulation Experiments.  (May 2006) 

Philip Isaiah Taucer, B.S., Texas A&M University 

 Chair of Advisory Committee: Dr. Clyde Munster 

  
 
 
 Two experimental rainfall simulation plots in the Edwards Aquifer region of 

Texas were established to measure the effects of brush clearing on surface and 

subsurface water movement pathways.  Multi-stage rainfall simulations were carried out 

at a site with Juniperus ashei (ashe juniper) cover both before and after brush removal, 

with three replications of a particular rainfall event for each vegetation condition.  

Similar simulations were carried out on a plot with a longstanding grass cover.  Both 

plots included trenches at their downhill ends for observation of shallow lateral 

subsurface flow.  Canopy interception was found to represent a major water loss, with 

interception of 32.7 mm for an average 166 mm, 5.25 hr rainfall event.  Brush clearing 

had little impact on surface runoff, with no overland flow occurring at the juniper plot 

for either vegetation condition, while 31.9 percent of applied rainfall moved as overland 

flow at the grass plot.  This difference was attributed to differences in the structure and 

permeability of the epikarst.  Brush removal caused significant (90 percent confidence 

level) reduction in shallow lateral subsurface flow into the trench after brush removal, 

with 56.7 percent of water reaching the surface entering the trench for the pre-cut 

condition and only 43.4 percent for the post-cut condition.  However, subsurface water 

movement through other pathways increased from 31.0 to 54.1 percent after brush 

removal.  This additional water, due to removal of canopy interception, could either 

move off-site through conduit and fracture flow or remain on site as storage in conduits, 

unconsolidated caliche/marl layers, or in soil pockets. 

 Two tracer tests with fluorescent dyes were also conducted using simulated 
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rainfall to assess discrete flow paths discharging into the trench at the downhill end of 

the juniper plot.  Analysis of samples from sixteen outlet locations revealed that not all 

areas of the plot were connected hydraulically to the trench.  Additionally, subsurface 

flow paths were found to have a high degree of interconnection, linking conduit flow 

outlets with multiple inlet locations on the plot surface.  Conduits showed strong 

connection with an area surrounding juniper vegetation, with rapid water flow (up to 2.4 

m/h) from this area.   
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CHAPTER I 

 INTRODUCTION AND LITERATURE REVIEW 

 
 
 
Synopsis 

 The topic of groundwater quality and supply has long been of interest to both 

researchers and agricultural industries, and the use of groundwater has been a key factor 

in allowing high levels of both urban and agricultural development throughout the world.  

However, aquifers do not offer limitless water supplies, nor are they immune to 

depletion from overpumping and contamination by pollutants.  While these problems 

often draw the greatest amount of attention in terms of sustainable groundwater supply, 

humans impact the water cycle and ultimately groundwater supply in a number of other 

ways.  One potential anthropogenic factor drawing increasing interest from 

hydrogeologists, ecologists, and resource managers is large-scale human alteration of 

plant cover. 

 It is a well-known principle in landscape ecology that the type and density of 

vegetation directly influences the amount of evapotranspiration and plant canopy 

interception in an area.  This, in turn, impacts soil moisture, surface runoff, lateral 

subsurface water movement, and deep drainage to groundwater.  These factors, when 

combined with properties such as soil composition, geology, rainfall patterns, and 

topography, play important roles in determining the distribution of water within local 

and regional water budgets.  In arid and semi-arid regions where maintaining reliable 

water supplies is extremely important, determining the impacts of vegetation on water 

availability is essential.   

 Over the course of the past two centuries, extensive areas of semi-arid landscapes 

that were once dominated by herbaceous grasslands have gradually been converted to 

shrublands (or mixed grassland/shrubland vegetation) through a process commonly 

called "woody plant encroachment.”  This extensive change has been largely attributed 

to human influence by a number of sources for well over half a century.  An early 

This thesis follows the guidelines of Hydrological Processes. 
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historical review of brush encroachment by Humphrey cited research as early as the 

1930s indicating largely anthropogenic causes.  Overgrazing was generally considered 

by early investigators to be the primary factor in shrub encroachment, with heavy 

livestock grazing pressure reducing much of the natural grass cover and removing 

competitors to woody plants.  Early research also implicated aggressive fire suppression, 

noting that fires have long been known as a tool to maintain prairie ecosystems and as an 

agent capable of killing woody plants (Humphrey 1958).  The findings of more recent 

studies (Archer 1994, Van Auken 2000) continue to support these suggestions.   

 Unfortunately, the effects of extensive woody plant encroachment on regional 

water budgets are complex and are not yet thoroughly understood.  Much evidence, both 

anecdotal and scientific, suggests that removal of brush species may increase availability 

of groundwater for streamflow and aquifer recharge.  Work by Dugas and Mayeux 

(1991) and Dugas et al (1998) on honey mesquite (Prosopis glandulosa) and ashe 

juniper (Juniperus ashei) found some impact of brush cover on evapotranspiration, but 

with only small increases in water availability occurring for short durations.  However, 

computer-based modeling studies such as those by Bednarz et al (2000) and Wu et al 

(2001) indicate the potential for large water yield increases under a properly designed 

brush management program.  Most recently, a modeling study by Afinowicz (2004) has 

shown increased surface runoff, baseflow, and deep aquifer recharge in response to 

clearing heavy brush.  In spite of the lack of consensus on the subject and limited 

knowledge from field studies, the State of Texas has established brush control programs 

to counteract woody plant encroachment and increase water supplies.  The implications 

of this program are significant when considering that over $30 million has been 

appropriated for brush control projects in Texas in recent years (TSSWCB 2004).     

 

Brush and water yield 

 The basic concept behind using brush removal as a method for increasing water 

yield is that converting vegetation cover with high evaporation and transpiration rates to 

species that use less water may increase water yield (Thurow et al 2000), such as by 
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replacing deeply-rooted species with shallow rooted species (Carlson et al 1990).  For 

humid landscapes, vegetation alteration may cause significant changes in the water cycle 

(Wilcox 2002).  However, because the efficiency of this vegetation alteration process 

increases with annual precipitation, drier landscapes may not be as effective as other 

areas for increasing water yield (Graf 1988).  In some drylands, such as southwestern 

chaparral rangelands, woody plant control is linked to increases in streamflow (Wilcox 

2002).  In others, such as pinyon-juniper communities in Arizona and Utah, brush 

removal typically does not impact water yield (Wright et al 1976).  In general, the 

potential for increasing water yield through brush control exists for areas with annual 

precipitation of approximately 450 mm or greater (Hibbert 1983, Thurow et al 1987).  

Vegetation management for increased water yield may be a viable option on less than 1 

percent of western rangelands (Hibbert 1983).  There has been some suggestion that 

honey mesquite removal could increase water yields (Dugas and Mayeux 1991, Weltz 

and Blackburn 1995) and that increased ashe juniper populations have reduced recharge 

and stream flow (Dugas and Mayeux 1991); these assertions continue to be hotly 

debated and are far from universally accepted as reliable water management strategies 

for Texas rangelands.  Several factors may influence the likelihood of increased water 

yield from brush control in Texas, including average precipitation, shrub density, runoff 

and streamflow generation characteristics, and canopy interception (Wilcox 2002).  

Brush control is unlikely to impact water yields in areas with low subsurface water 

movement (TAES 2005).  There is some potential for increased water yield on juniper 

rangelands in Texas due to their high interception capacity and tendency to be found in 

areas with shallow soils and permeable parent materials creating the possibility of 

subsurface flow (Wilcox 2002).  One such area is the Edwards Plateau, where some 

studies have documented increased water yield following brush removal (Kreuter et al 

2004).  However, even for this highly permeable landscape, which contains the karst 

Edwards Aquifer, one must consider the impacts of local geology and soil conditions, 

brush clearing method, extent of clearing, and scale of observation on water yields.   
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Brush encroachment history 

 The replacement of grassland vegetation by encroaching brush species in 

rangelands is occurring in a number or locations worldwide, with widespread changes in 

southeast Asia, Africa, Australia, and North and South America during the past century 

(Archer 1994, Archer et al 2001).  This is particularly important due to the potential for 

woody plant encroachment to adversely impact approximately 20 percent of the world's 

population (Archer et al 2001).  In North America, alteration of native vegetation has 

been documented for numerous locations throughout the southwestern United States.  

Unfortunately, the amount of data to constrain the history of this vegetation change is 

limited (Bhark and Small 2003) and in many cases may be based on location-specific 

personal accounts of travelers and early settlers.  Although some of the vegetation types 

taking over grasslands represent introduced species (including members of the genus 

Tamarix, also known as salt cedar), many are native species from preexisting adjacent 

communities (Van Auken 2000).  Many of the brush species extending in range are 

members of the genus Juniperus, whose increasing range and density have impacted 

roughly 16.6 million ha in the Intermountain West and an additional 8.9 million ha in 

Texas.  Overall, approximately 40 million ha of Texas rangeland is dominated by woody 

shrubs and tree growth (Carlson et al 1990).  Many of these species, including ashe 

juniper (Juniperus ashei), were originally confined to steep slopes and rocky outcrops 

(Owens 1996, Van Auken 2000, Miller et al 2000) but have spread downslope into 

grasslands (Van Auken 2000).  In Texas, this increase has been especially pronounced 

for the last 50 to 80 years for mesquite (Prosopis glandulosa), redberry juniper 

(Juniperus pinchotii), and ashe juniper (Wilcox 2002, Olenick et al 2004).   

 A number of factors have been cited as potential causes of woody plant 

encroachment, many of which are attributable to human influence.  An early historical 

review of brush encroachment by Humphrey (1958) cited research as early as the 1930s 

indicating largely anthropogenic causes.  In many cases, there seems to be a strong 

linkage between woody plant encroachment and the development of the livestock 

industry in the Southwest (Archer 1994, Van Auken 2000).  While large herbivores such 
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as bison inhabited rangelands prior to European settlement and the development of the 

cattle industry, the ability to roam freely meant that destructive and long-lasting impacts 

on vegetation composition were rare and locally isolated.  The confinement of livestock 

led to destructive grazing on many rangeland areas.  In some parts of the southwestern 

United States livestock densities increased to a level where drought conditions or severe 

winters could lead to mortality rates of nearly 85 % (Smeins et al 1997).  

 Alteration of fire frequency and suppression of natural fires is also commonly 

cited as a cause of brush encroachment (Humphrey 1958, Van Auken 2000).  Fire 

frequency, intensity, and timing are among a number of factors controlling the relative 

proportion of the landscape vegetated with ashe juniper (Fuhlendorf et al 1997), and it 

has been suggested that in the absence of periodic disturbances such as fire much of the 

Edwards Plateau could succeed to nearly closed canopy brush stands (Smeins et al 

1997).  The timing of woody plant encroachment in some southern areas appears to be 

associated with fire suppression in addition to the aforementioned increase in cattle 

ranching (Van Auken 2000).  Fire suppression has been especially active since World 

War II, and heavy grazing by domestic livestock has reduced fine fuel loads (Miller et al 

2000).  Prior to European settlement, fires ignited by lightning as well as those 

intentionally set by Native Americans minimized woody plant presence in southwestern 

grasslands (Burkhardt and Tisdale 1976).  Although Native American use of fire as a 

tool for vegetation and wildlife management has not been explicitly proven for the 

Edwards Plateau, it is well documented in other areas and there seems to be little reason 

to doubt its occurrence for the Plateau as well (Smeins et al 1997). 

 

Rangland water cycle 

 Before understanding how brush encroachment alters the partitioning of rainfall, 

one must understand the basic movement pathways in the rangeland water cycle.  

Rangeland basins contribute most of the surface flow and recharge in the southwestern 

United States (Carlson et al 1990).  Runoff, most of which occurs as flood flow, 

typically makes up less than ten percent of rangeland water budgets (Wilcox et al 2003), 
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although overland flow is the predominant contributor to storm channel runoff in arid 

and semi-arid areas (Yair and Lavee1985).  Runoff in rangelands may take several 

forms, moving as Horton overland flow, saturation overland flow, groundwater flow, or 

shallow subsurface flow (Yair and Lavee 1985, Wilcox 2002).  Horton overland flow 

results from rainfall rates greater than soil infiltration capacities (Kirby 1985) and 

dominates runoff processes in drylands (Graf 1988).  Saturation excess overland flow is 

caused by rainfall on saturated soil (Kirby 1985), which is relatively rare in semi-arid 

settings (Wilcox et al 1997) but may occur due to rising groundwater levels or a perched 

zone above an impermeable layer (Wilcox et al 2003, Wilcox et al 1997).   

 Shallow lateral subsurface flow is lateral movement of water through near-

surface soil or rock horizons and can be generated by matrix or macropore flow paths.  

Macropores may result in direct lateral flow or may cause lateral flow by contributing to 

saturated zones above low-permeability bedrock (Newman et al 1998).  Subsurface 

preferential flow pathways may also impact water movement.  However, the presence of 

macropores is not a guarantee that preferential flow will occur (Helling and Gish 1991).  

Macropore-associated preferential flow is governed by a number of factors, including 

pore continuity and density and water fluxes (Devitt and Smith 2002), and macropore 

flow is typically greater in structured, fine-grained soils than in coarse sediments 

(Scanlon et al 1997).   

 Deep drainage is the movement of water downward past the bottom of the root 

zone and due to thick vadose zones in arid and semi-arid environments may not always 

be equated with recharge (Seyfried et al  2005).  For semi-arid rangelands recharge is 

generally low (Wilcox et al 2003, Wilcox 2002) and in many arid and semi-arid 

landscapes may not occur (Seyfried et al 2005).  However, the probability of deep water 

movement is increased in areas with soils conducive to permeability or with fractured 

bedrock (Seyfried et al 2005, Wilcox 2003). 

 Evapotranspiration (ET) consists of water transpired from vegetation and 

evaporation from both the soil and plant surfaces (Ward and Trimble 2004), and 

represents the largest single water loss from rangelands (Dugas and Mayeux 1991).  For 
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arid and semi-arid environments it roughly equals precipitation over multi-seasonal 

periods (Kurc and Small 2004).  In semi-arid rangelands, it can account for as much as 

80 to 95 percent of the water budget (Wu et al 2001).  Because potential 

evapotranspiration exceeds precipitation in these landscapes, true ET in drylands is often 

limited by soil moisture availability (Kurc and Small 2004).  This makes storage of large 

amounts of water in arid and semi-arid regions unlikely (Seyfried et al 2005).    

 Vegetation, whether brush or herbaceous matter, also plays a direct role in the 

partitioning of rainfall in rangelands.  Rainfall striking vegetation may be intercepted, or 

captured by the plant canopy or litter, and evaporated.  For rangeland systems, this water 

loss is generally between 20 and 40 percent of precipitation but may vary between 1 and 

80 percent (Wilcox et al 2003).  In addition causing evaporative losses, interception 

reduces the impact of raindrops on the ground surface, reducing the dislodging of soil 

particles which can clog soil pores (Weltz and Blackburn 1995).  Some of the water 

intercepted by the plant canopy may also flow down the plant as stemflow.  Stemflow 

results in rapid concentration of high water volumes at the base of vegetation and could 

provide an important source of moisture in semi-arid landscapes (Martinez-Meza and 

Whitford 1996).  This flow may also be nutrient enriched (Thurow and Hester 1997).  

Stemflow depends on vegetation type, morphology, and the distribution of cover 

(Martinez-Meza and Whitford 1996).   

 Vegetation patches in rangelands also act as reserves for moisture and nutrients 

(Ludwig and Tongway 1997), obstructing and trapping runoff, sediments, and nutrients 

from flow generated in canopy interspaces.  These inputs may create added growth 

within the vegetation cluster, increasing the capacity to trap nutrients (Ludwig et al 

2005).  This focusing of water into vegetation clusters may be necessary for growth in 

arid and semi-arid areas, as soil moisture would be insufficient for biological 

requirements if rainfall were spread evenly over such areas (Ludwig and Tongway 

1997). 
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Impacts of brush on range 

 Due to the intimate connection between vegetation and water movement on 

rangelands, alteration of plant cover may have a number of impacts on the hydrologic 

cycle; Scanlon et al (1997) asserts that vegetation may be the most significant control on 

desert soil water movement.  Because overland flow is such an important part of the 

rangeland water budget, studies of brush encroachment often examine how brush species 

influence surface runoff.  The primary mechanism by which brush species impact 

surface runoff is through alteration of soil infiltration, which may be increased or 

decreased (Huxman et al 2005).  In shrubland systems, infiltration rates are typically 

highest under shrubs and trees and lowest for bare ground (Thurow et al 1988), although 

this is not true for all situations (Bhark and Small 2003).  Shrubs may alter infiltration 

capacity through the addition of leaf litter, which improves soil structure and maintains 

large pores (Thurow and Hester 1997) as well as through root action (Wilcox 2002).  In 

addition, litter dissipates rainfall energy and shields the ground surface from soil 

detachment (Hester et al 1997), which might otherwise clog surface pores and increase 

runoff (Weltz and Blackburn 1995).  Although infiltration may increase under shrub 

canopies, shrublands are often associated with more overland flow than grasslands 

(Bhark and Small 2003).  In many cases this high runoff is generated not within the 

canopy but in the bare interspaces between plants (Schlesinger et al 1999, Reynolds et al 

1999).  In some situations shrub litter may obstruct interspace runoff and act as a sink for 

overland flow (Thurow and Hester 1997, Bhark and Small 2003).  However, in some 

cases the conversion of grasslands to shrub growth reduces the efficiency of vegetation 

patches as runon sinks (Wilcox et al 2003), with runoff generated in interspaces tending 

to travel through other interspaces and bypassing vegetated areas (Seyfried and Wilcox 

1995, Wilcox et al 2003). 

 Woody vegetation also influences the evapotranspiration component of the 

rangeland water budget.  Woody cover can alter evapotranspiration due to higher 

interception and transpiration in woody vegetation than in grassland (Wu et al 2001).  

Woody plants tend to have longer active seasons than herbaceous plants and impact soil 
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water year round (Huxman et al 2005, Wu et al 2001).  The deeper roots of shrubs 

enable them to continue transpiration under low soil moisture conditions (Kurc and 

Small 2004).  Additionally, bare soils, which provide a surface for direct evaporative 

losses, generally occupy a greater proportion of shrublands than grasslands (Kurc and 

Small 2004). 

 Juniper vegetation in particular has great potential for impacting evaporative 

water losses.  Juniper can transpire throughout the year, is capable of withdrawing water 

from drier soils than grasses, and provides a greater surface area for water evaporation 

from its vegetation surfaces and litter (Thurow and Hester 1997).  Compared to live oak, 

another tree species common on the Edwards Plateau area, ashe juniper has a leaf area 

index three times greater than that of the oak and transpires much more water on a daily 

basis; a mature ashe juniper may transpire up to 125 liters per day, while a mature oak of 

similar size uses 72 liters per day (Owens and Ansley 1997).  On an annual basis a 

mature ashe juniper can transpire 305 to 432 mm of water per year (TAES 2005).  This 

heavy water use may not harm the competitive ability of ashe juniper, as it is able to 

maintain active gas exchange under water-limited conditions (Owens 1996). 

 The process of canopy interception is closely related to evapotranspiration, as 

water captured by vegetation canopies can later be directly evaporated from leaf and 

stem surfaces.  Both grass and shrubs intercept a significant portion of ambient rainfall 

(Weltz and Blackburn1995).  In some cases with heavy herbaceous cover interception 

losses may match or exceed those of brush, but in many cases evergreen shrubs such as 

juniper display higher interception due to their evergreen nature and high leaf area 

(Wilcox et al 2003).  Work by Thurow et al (1987) at Sonora, TX on herbaceous plant 

interception found that sideoats grama may intercept 18.1 percent of the annual water 

budget, while curlymesquite intercepts 10.8 percent of annual rainfall.  Interception by 

tree canopies is species dependent and may be influenced by rainfall intensity (Owens 

and Lyons 2004).  Domingo et al (1998), in an analysis of desert shrubs, found 

interception losses of 21 percent for Retama sphaerocarpa and 40 percent for Anthyllis 

cytisoides.  Návar and Bryan (1990)  documented interception losses of 27.2 percent for  
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Acacia farnesiana / Prosopis laevigata vegetation in northeastern Mexico.    For live oak 

(Quercus virginiana) on the Edwards Plateau, interception losses as high as 45 percent 

have been documented, with 25.4 percent of rainfall intercepted by the canopy and an 

additional 20.7 percent lost to litter (Thurow et al 1987).  Ashe juniper intercepts a large 

fraction of annual precipitation; Thurow and Hester (1997) found 36.7 percent of gross 

precipitation lost to ashe juniper.  Owens and Lyons (2004) found similar behavior, with 

40 percent of annual precipitation intercepted and lost to evaporation.  

 Stemflow focuses water application to the bases of trees or shrubs, resulting in 

rapid concentration of large volumes of water (Martinez-Meza and Whitford 1996).  The 

amount of water moving as stemflow is dependent on precipitation characteristics, 

vegetation type, leaf type and position, bark roughness, stem area and angle, and tree 

size (Martinez-Meza and Whitford 1996).  Stemflow in arid and semi-arid landscapes 

varies widely by species.  A stemflow value of 0.6 percent of bulk preceipitation has 

been documented for Acacia farnesiana and Prosopis laevigata associations in 

northeastern Mexico, with Diospyrus texana in the same area having 5.6 percent 

stemflow.  Skau found stemflow in Utah and alligator juniper in Arizona to be between 1 

and 2 percent of precipitation (1964).  For live oak on the Edwards Plateau, stemflow 

has been observed to focus as much as 222 percent of annual precipitation near the base 

of trees (Thurow et al 1987).  The stemflow contribution may be even more pronounced 

for ashe juniper.  One study of ashe juniper on the Edwards Aquifer found stemflow 

accounting for 2 percent of rainfall moving as stemflow at the 10 mm precipitation level 

and 4 percent at high rainfall levels (Owens an Lyons 2004).  Another study on ashe 

juniper found 5.1 percent of precipitation moving as stemflow, leading to concentration 

of 462 percent of annual precipitation at the base of the trunk (Thurow and Hester 1997).   

 Shrubs can also alter subsurface water movement.  Shrub-linked preferential flow 

is known to occur in some arid and semi-arid landscapes (Seyfried et al 2005); 

preferential flow paths under brush include root systems and animal burrows (Devitt and 

Smith 2002).  This channeling of water to deeper roots by brush may provide the shrubs 

with a means of functioning during drought conditions (Seyfried et al 2005).  In some 
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situations the redistributed water reaches great depths.  For example, water moving 

along the soil-root interface of Australian mallee vegetation may be stored as deep as 28 

m (Nulsen et al 1986).  The depth of water movement under shrubs is a function of shrub 

canopy and root distribution (Martinez-Meza and Whitford 1996) and has been 

documented to be generally greater for higher rainfall application rate, large shrub size, 

wet antecedent conditions, and concentration of rainfall into a single large event (Devitt 

and Smith 2002). 

 

Impacts of brush on other species 

 The encroachment of woody plants into grasslands by its nature causes 

significant decreases in herbaceous production.  This process is particularly well-known 

for juniper species.  Increasing juniper cover tends to correspond with a decrease in 

herbaceous cover (Thurow et al 1997), and in some circumstances juniper may virtually 

eliminate understory growth (Davenport et al 1998).  Grazing capacities in central Texas 

have been reduced from 1 animal unit / 6 ha to 1 animal unit / 20 ha due to ashe juniper 

encroachment (Wright et al 1982).  This decline in herbaceous understory has been 

associated with a number of factors, including canopy shading, water interception, litter 

accumulation, and allelopathic effects (Schott and Pieper 1985).  Shading and deep litter 

accumulation appear to be the primary constraints on herbaceous growth (Smeins et al 

1997)   Under unbrowsed trees, the hydrophobic litter layer can limit germination of 

herbaceous species (Fuhlendorf et al 1997) because moisture can run off or dry quickly 

(Smeins et al 1997).  Fortunately, it appears that at least to some extent brush removal 

reverses the effects of brush on herbaceous production; an increase in herbaceous 

production from nearly 0 to 1,400 kg/ha following chemical brush treatment has been 

observed for western juniper (Thurow et al 1997). 

 Juniper vegetation possesses a number of other attributes which enable it to out-

compete other species once established.  Juniper shrubs maintain deep and lateral roots 

as well as a dense root mat near the soil surface, enabling them to compete for water in 

canopy and interspace areas and use water inaccessible to herbaceous competitors 
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(Thurow and Hester 1997).  In at least one case ashe juniper has been documented to 

receive nearly a quarter of the water for growing season transpiration from a depth of 

greater than 7 m (Jackson et al 2000).  Some brush species also have exceptionally low 

pressure limits for extraction of soil water (Seyfired et al 2005), enabling them to gather 

moisture under low soil moisture conditions.  Although sometimes overlooked, juniper 

has considerable reproductive advantages as well.  While the seed bank of ashe juniper 

displays low viability and germinability (Owens and Schliesing 1995), a large ashe 

juniper may, under favorable conditions, produce between 100,000 and 250,000 berries 

per year (Smeins et al 1997).  Successful longterm juniper management requires 

consideration of seed input and reduction of existing seed stock (Owens and Schliesing 

1995).   

 

Texas brush studies 

 Several field studies in Texas have examined the effects of upland brush 

vegetation and brush clearing on local hydrologic cycles.  A number of studies have 

focused on the effects of brush treatment methods on sediment yields and surface runoff.  

Wright et al (1976) performed six paired watershed studies on the effects of prescribed 

burning after tree dozing on sediment, water yield, and water quality in the north end of 

the Edwards Plateau.  Level areas did not experience adverse effects, but moderate and 

steep slopes showed increased erosion losses, runoff changes, or decreased water 

quality.  These effects lasted 9 to 15 months on moderate slopes and up to 30 or more 

months on steep slopes (Wright et al 1976).  A subsequent study found that herbaceous 

seeding of steep slopes reduced soil losses by 78 to 93 percent and decreased the time 

required to stabilize soil loss and overland flow and restore water quality (Wright et al 

1980).  More recently, Hester et al (1997) examined the hydrologic effects of fire on 

juniper, oak, bunchgrass, and shortgrass vegetation.  Prior to burning, terminal 

infiltration rates were highest for oak and juniper, with infiltration rates significantly 

reduced after burning for oak, shortgrass, and bunchgrass vegetation.  Improved soil 

structure under the juniper prevented a significant decrease in terminal infiltration rate.  
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After burning, erosion increased significantly for all four vegetation types (Hester et al 

1997).      

 Other water budget components and relationships have also been examined.  

Richardson et al (1979) established two small (3.5 to 4.1 ha) plots near Sonora, TX in 

areas with mixed live oak, shin oak, ashe juniper, redberry juniper, and honey mesquite 

cover.  The plots also included a herbaceous cover of forbs, shortgrasses, and 

midgrasses.  Woody plants were removed from one of the plots by root plowing.  The 

researchers determined that removal of the brush vegetation resulted in a 20 percent 

reduction in surface runoff, due to surface storage in large depressions created by the 

root plowing process.  Interestingly, for the plots examined antecedent moisture played 

little role in determining the amount of runoff from a given rainfall event.  A similar 

study in the Blackland Prairie examined plots originally vegetated with honey mesquite 

and herbaceous growth, with the woody growth killed on one plot using a chemical 

treatment.  Evapotranspiration was measured for both plots before and after brush 

treatment, with similar ET from both plots prior to brush treatment.  Subsequent to 

chemical application, evapotranspiration from the treated site decreased approximately 8 

cm per year (Richardson et al 1979).   

 Another study by Carlson et al (1990) focused on the effects of honey mesquite 

on the Rolling Plains of Texas.  Nine tree-scale plots (15.0 to 26.7 m2) were monitored 

using nonweighable lysimeters, with honey mesquite left intact on three plots, mesquite 

removed from three plots, and both mesquite and herbaceous cover removed from the 

remaining plots.  Average soil moisture in the upper two meters of the soil profile was 

greatest in the bare ground plots.  Runoff was also greatest on bare ground, with little 

difference between the mesquite and mesquite-herbaceous plots.  Evapotranspirative 

losses from both mesquite and mesquite-herbaceous covers were similar, with 

approximately 12 percent greater losses than bare ground evaporation except in a low 

rainfall year.  Rangeland brush removal was concluded to have no effective net change 

on deep drainage, evapotranspiration, or runoff when followed by an increase in 

herbaceous cover (Carlson et al 1990). 
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 Dugas and Mayeux (1991) focused on the evapotranspiration component of the 

mesquite rangeland water budget near Throckmorton, Texas.  Bowen ratio / energy 

balance ET measurements were taken for two adjacent 4 hectare areas, one with 

herbaceous cover after mequite treatment with diesel and another with mixed herbaceous 

and honey mesquite cover.  Honey mesquite provided 15 percent of the cover and 38 

percent of total ET for the untreated plot.  Differences in evapotranspiration between the 

untreated and treated plots were greatest during dry conditions, with little difference 

immediately following precipitation.  Overall, evapotranspiration from the untreated plot 

was only slightly greater than for the treated area due to an increase in herbaceous cover 

on the treated plot subsequent to mesquite control.  The authors concluded that the site's 

low potential for runoff and recharge made increased water yields through mesquite 

control unlikely, but suggested that changes might occur for other sites or for treatment 

followed by herbaceous crop management (Dugas and Mayeux 1991). 

  Dugas, Hicks, and Wright (1998) studied evapotranspiration and runoff in ashe 

juniper vegetation in the Edwards Aquifer area using Bowen ratio / energy balance 

methods.  ET readings were monitored for a five year period at two 15 hectare sites, one 

with juniper vegetation cut after nearly two years and the other with juniper vegetation 

left untreated.  Due to limited runoff data, comparison of runoff for the treated and 

untreated plots was inconclusive.  For the post-treatment period, removal of juniper 

resulted in an average decrease in ET of 0.07 mm/d, with the difference peaking after 

two years and water yields decreasing after three years.  The study did note that for areas 

with less permeable soils and more moisture storage an increased herbaceous response 

after clearing would likely result in less change in evapotranspiration.  Interestingly, for 

this study area ET accounted for only 65 percent of precipitation (Dugas et al 1998); this 

value is quite low for a semi-arid rangeland system. 

 Owens and Lyons (2004) monitored ashe juniper canopy and litter water 

interception for 2700 rainfall events across ten locations on the Edwards Plateau during a 

three year period.  Overall, juniper canopies intercepted 35 percent of precipitation, with 

another five percent intercepted by the litter layer.  Interception losses varied with 



 15

rainfall amount and intensity, with very high interception for smaller events (60 percent 

of rainfall for a 12.5 mm, 19 hr storm) and lower interception for larger events (20 

percent for a 71 mm, 15 hr storm).  The relationship between rainfall amount and 

percentage of interception was modeled as an exponentially decreasing function.  Storms 

of less than approximately 25 mm were found to be ineffective for increasing soil 

moisture, with nearly 83% of rainfall events falling below 0.5 inches.  The study notes 

significant differences in interception losses among the ten sites, with differences in tree 

morphology suggested as a probable cause for variability in losses (Owens and Lyons 

2004).  

 Wu et al (2001) modeled the effects of various brush control strategies on the 

water yield of the Cusenbary Draw basin on the Edwards Plateau using the SPUR-91 

hydrologic model.  A complete lack of brush management resulted in a 35 percent 

decrease in water yield.  A simulation of a hypothetical cost-share clearing program with 

least-cover areas on 40 percent of range sites reduced to 3 percent cover resulted in a 43 

percent increase in water yields.  Location and soil properties played a significant role in 

results, with a similar cost share program potentially increasing yield 50 percent on sites 

with deep soil and high forage value and 100 percent on sites with shallow soils and high 

water yield potentials.  Modeling results suggested that brush removal must reduce cover 

below a threshold value of 20 percent to effectively alter water yields (Wu et al 2001). 

 Another modeling study prepared for the Texas State Soil and Water 

Conservation Board used the SWAT model to simulate the hydrology of the Edwards 

Aquifer area to determine relationships between changes brush cover and shifts in the 

proportion of rainfall taking the form of runoff.  None of the sub-basins studied 

exhibited decreasing runoff as a percentage of precipitation.  While three of the sub-

basins were suggested for further analysis, none were found to be promising areas for 

increased water yield through brush management (HDR 2000).  Another study on brush 

control in the Edwards Aquifer area using the SWAT model found considerable 

increases in water yield for a hypothetical brush control program, with increases of from 
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approximately 80 to 170,000 gal/treated acre/year for 26 to 45 percent brush removal for 

the sub-basins examined (Bednarz et al 2001). 

 More recently, Afinowicz (2004) investigated the effects of brush clearing on the 

North Fork of the Upper Guadalupe River basin (NFUGR) using a modified SWAT 

model.  For the simulation period, removal of heavy brush caused the greatest decreases 

in ET and resulted in increased surface runoff, baseflow, and deep recharge.  

Evapotranspiration was reduced by an average of 46.6 mm/y for complete removal of 

heavy and moderate brush covers.   

 

The Edwards Aquifer  

 The Edwards Plateau region of Texas, a broad, gently rolling upland region, is 

one of the largest continuous karst landscapes in the United States (Smith and Veni 

1994).  Its eastern portion contains the Edwards Aquifer, which extends from north of 

Uvalde to near the Austin area in a band approximately 250 km long and from 8 to 50 

km wide (Dugas et al 1998).  The aquifer contains several major functional zones, 

including a contributing catchment on the Edwards Plateau, a recharge area in the 

Balcones fault zone, and a confined area of both fresh and saline water zones.  The 

Edwards Aquifer is also one of the most productive carbonate aquifers in the United 

States, with large porosity and high permeability due to limestone dissolution and the 

formation of a cavernous network (Maclay 1995).  Karst landscapes are derived 

primarily through chemical erosion and are often characterized by sinkholes, caves, and 

sinking streams; permeability may span orders of magnitude and include subsurface 

conduits / streams.  While the amount of water stored in conduits is relatively small, 94 

to 99.7 percent of water in karst systems moves through conduits over time (Veni 2004).  

Dye tracer testing in the Barton Springs segment of the aquifer has documented flow 

velocities of approximately 6.4 to over 11 km/day under moderate and high groundwater 

flow conditions (BS/EACD 2003).    

 In spite of such rapid water movement, the Edwards Aquifer is not immune from 

overuse.  It provides the primary source of water for San Antonio, Austin and many 
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other cities (Wu et al 2001) and has been designated as a "sole source" water supply for 

San Antonio by the U.S. Environmental Protection Agency (Maclay 1995).  Populations 

in the area are increasing, with a 25.2 percent population growth in San Antonio between 

1990 and 1998 and a 47.7 percent growth in Austin and San Marcos from 1990 to 2000; 

the population of the Edwards Plateau is projected to increase 88 percent from 1995 to 

2030 (Kreuter et al 2004).  In recent years, spring flow and pumping discharge has 

exceeded aquifer recharge several times (Dugas et al 1998).  The number of new wells 

constructed each year is increasing due to irrigation of more land in Uvalde, Medina, and 

Bexar counties (Maclay 1995).   

 

Scope and objectives 

 In the Edwards Aquifer region of Texas, which includes the rapidly-expanding 

city of San Antonio, the potential for increased water yield through brush management is 

unknown.  While some field investigations of plant-water cycle interactions have been 

carried out in the area, the rangeland water budget of the region includes a number of 

components that have not yet been studied in great detail.  For that reason, this study has 

sought to take a comprehensive approach to the analysis of brush control by 

simultaneously examining many potential water movement pathways, with the major 

goal of improving scientific understanding of the effects of juniper clearing on the 

hydrology of the Edwards Aquifer region.  In order to meet this goal, the project was 

designed to address the following objectives:    

(1)  Determination of which components of the rangeland water budget (canopy and 

litter interception, runoff, evapotranspiration, throughfall, stemflow, lateral subsurface 

flow, soil moisture, deep recharge, etc.) are active during precipitation events at a large 

plot scale in a juniper landscape. 

(2)  Quantification of how rainfall is proportioned among these different components 

and how the proportion responds to rainfall amount for both undisturbed and cleared 

conditions. 
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(3)  Characterization of shallow subsurface flow pathways for the project plot. 

(4)  Analysis of the interactions between brush vegetation and subsurface flow paths. 

(5)  Assessment of the potential for increasing human-accessible water yield through 

juniper removal in the Edwards region based on collected data. 

 Support for brush control programs is based on the assertion that invasive brush 

species result in an overall reduction of human-available water (runoff, streamflow, and 

aquifer recharge) in comparison to natural grassland/savanna vegetation.  Earlier studies 

of brush control in the Edwards Aquifer region have focused primarily on canopy 

interception and evapotranspiration (ET), which constitute a considerable portion of the 

water budget in arid and semiarid landscapes.  However, brush species alter other factors 

such as topography, infiltration capacity, and spatial distribution of moisture which play 

a role in the partitioning of water within local and regional water budgets.  Additionally, 

for the Edwards Aquifer region, studies have shown surprisingly low ET (≈ 65% of 

precipitation) values for a semiarid landscape (Dugas et al 1998).  As such, examination 

of only a few factors of the water budget leaves a great deal of uncertainty in terms of 

potential enhancement of water yield.  Thus, this project has sought to address this 

uncertainty by monitoring multiple hydrologic factors during natural and artificial 

rainfall events to develop detailed water budgets for a representative large plot scale 

simulation site.  Water budgets have been determined for the site both with and without 

juniper cover, with a comparison of the two conditions revealing impacts of woody plant 

removal.  It is hoped that the results from this study, along with those from a new 

companion site, will encourage similar studies throughout the Edwards Aquifer region.  

Furthermore, it provides a potential framework on which to base similar studies in other 

semi-arid brush landscapes which have traditionally been examined only in terms of 

evapotranspiration.   
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CHAPTER II 

EFFECTS OF BRUSH REMOVAL 

 
 
 
Overview 

 Conversion of grassland vegetation to shrublands by encroaching species is 

occurring in a number of locations worldwide (Archer 1994, Archer 2001).  This 

alteration includes both introduced species and native species from adjacent 

communities (Van Auken 2000).  Brush encroachment in the southwestern United States 

is often associated with anthropogenic causes, including development of the livestock 

industry and active suppression of rangeland fires (Humphrey 1958, Archer 1994, Van 

Auken 2000).  The issue of brush encroachment is well known in Texas, where brush 

and tree growth dominates approximately 40 million ha of Texas rangelands, including 

8.9 million ha impacted by members of the genus Juniperus (Carlson et al 1990).  The 

effects of this vegetation on the hydrologic cycle of Texas rangelands are not known.  

Some brush species are known to use large amounts of water.  For example, mature 

Juniperus ashei (ashe juniper) have been documented to transpire up to 125 liters of 

water per day (Owens and Ansley 1997).  Brush species can also alter other aspects of 

rainfall partitioning as well.  Soil infiltration capacities may be altered by the addition of 

leaf litter (Thurow and Hester 1997) and by root action (Wilcox 2002).  These changes 

in infiltration capacity are also the primary mechanism by which brush impacts runoff 

(Huxman et al 2005).  Some evergreen shrubs may also intercept a higher percentage of 

precipitation than herbaceous species (Wilcox et al 2003).  Some of this intercepted 

water may also become stemflow, which focuses large volumes of water at the base of 

trees and shrubs (Matinez-Meza and Whitford 1996).  One study documented 

application of 4.6 times the annual rainfall total at the base of ashe juniper vegetation 

due to stemflow (Thurow and Hester 1997).  Shrub-linked preferential flow processes 

are also known to occur in some arid and semi-arid landscapes (Seyfried  et al 2005). 
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 Brush control (through chemical treatment, cutting, chaining, or prescribed 

burning) is commonly considered to be a viable method to increase water yields.  The 

basic concept behind this is that replacement of deep-rooted species that use large 

amounts of water with shallow-rooting herbaceous plants may result in a higher net 

water yield (Thurow et al 2000).  However, due to the complex nature of rangeland 

hydrology, one cannot automatically equate lower transpiration with long-term increases 

in human-accessible water yields.  Factors influencing the potential for increased yields 

include annual precipitation, shrub cover density, runoff and groundwater flow 

characteristics, and rainfall interception characteristics of vegetation (Wilcox 2002).   

 Several recent modeling studies indicate potentially large water yield increases 

under various brush management scenarios (Bednarz et al 2000, Wu et al 2001, 

Afinowicz 2004).  However, the field studies carried out to date have not shown such 

dramatic results.  For example, Carlson et al (1990) found no effective net change on 

evapotranspiration, runoff, or deep drainage after mesquite treatment, partially due to 

increased herbaceous growth after treatment.  Another study by Dugas et al (1998) on 

ashe juniper found only slight short term decreases in evapotranspiration after treatment.  

There may be some potential for increased water yields from juniper rangelands due to 

the high interception capacity of juniper canopies and the tendency of juniper to grow in 

areas with shallow soils and permeable parent materials (Wilcox 2002).  The karst 

Edwards Aquifer region of the Edwards Plateau is one such area.  Unfortunately, as with 

other areas of the state, only a limited number of studies have examined the effects of 

juniper removal on the Edwards Aquifer; these studies have historically focused on only 

a few components of the rangeland water budget, with the primary focus on 

evapotranspiration and surface runoff.  This study attempts to address the existing 

limitations in knowledge by monitoring the effects of juniper brush removal on 

partitioning of rainfall for multiple surface and subsurface flow routes. 

 

 

 



 21

Methods 

Study area  

 The study area is located in the Edwards Aquifer region of Texas approximately 

40 km north of downtown San Antonio within the confines of the Honey Creek State 

Natural Area (29° 50' N, 98° 29' W).  Honey Creek is situated in western Comal County 

(see Figure 2.1 on the following page) within the drainage area of the Edwards Aquifer.  

Water falling within the drainage area travels through spring-fed streams to the Edwards 

Aquifer recharge zone (Maclay 1995).  The natural area is located within the Upper 

Guadalupe River basin in close proximity to the river itself.  The topography of the area 

is typical of the Central Texas Hill Country, characterized by numerous "stairstep" hills 

caused by alternating hard and soft limestone beds within the underlying Glen Rose 

Formation (Woodruff et al 1992).  Although the project site is located on the lower 

member of the Glen Rose formation rather than on Edwards limestone, the local geology 

represents a highly karstified limestone subsurface, with fractures and solutional 

conduits within this limestone acting as preferential flow paths for water movement.  

Surface recharge features such as sinkholes are common within the natural area, with 

several located within 100 m of the research site.  Smith and Veni (1994) describe the 

lower Glen Rose Formation as a "thick-bedded to massive fossiliferous limestone that 

contains many of the longer caves in Texas."  Soils at the study site are typically 

shallow, gravelly clays and loams, with extensive presence of small surface rocks and 

larger rock outcrops.  Several soil series are present within the Honey Creek preserve, 

with large extents of the Comfort-Rock Outcrop and Real-Comfort-Doss groups as well 

as some Eckrant-Rock Outcrop soils located along the creek itself (SCS 1984).  

Although soils in the area are often viewed as having minimal infiltration capacity, work 

at and near the study site has revealed localized areas with remarkably rapid infiltration 

capacity.  Vegetation in the Honey Creek area consists of mixed grassland and brushland 

growth.  Woody growth includes scrub live oak (Quercus virginiana Mill.) and the more 

dominant ashe juniper.  Intercanopy spaces are typically occupied by grasses such as 

little bluestem, sideoats grama, and Texas wintergrass.  Pricklypear is common in 



 22

intercanopy areas and appears to be able to compete even within areas of dense grass 

growth (Andrew Weichert 2005, personal communication).  

 Average annual precipitation is approximately 737 mm/year.  Precipitation in the 

area comes primarily from intense thunderstorms during the summer months (Maclay 

1995).  The average growing season for the area is 250 days (Porter 2005). 

 

 

 

 

Plot characteristics  

 The study used two plots for an analysis of the effects of brush clearing on 

rainfall partitioning.  The main project plot was established in juniper woodland, while a 

companion plot was established in a nearby area historically free of brush vegetation.  

Soils at both plots are members of the Real-Comfort-Doss group. 

 The main project plot occupies 98 m2 (7 x 14 m) at the edge of a dense juniper 

forest.  Under the pre-cut condition, tree growth dominated the plot, with woody 

Figure 2.1. Location of Honey Creek State Natural Area, Comal County, Texas. 
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vegetation in the plot consisting solely of juniper at nearly 100 percent canopy coverage.  

Ground cover was characterized almost entirely by a 2.5 to 5 cm deep layer of juniper 

leaf litter or "duff" as well as numerous surface rocks, with minimal presence of short 

grasses, prickly pear, and agarita.  After brush clearing, cedar litter and rock matter 

continued to dominate surface cover, although grass vegetation expanded to 

approximately ten percent of surface coverage.  Coarse, granular sandy clay loam soils 

ranging from 0 to 30 cm in depth underlie the litter layer.  Rather than forming a 

continuous layer from the surface to bedrock, the soil profile is broken into numerous 

veins and pockets by the large number of limestone plates incorporated into the soil, 

with the only continuous region of the profile being the upper 7.5 cm.  In some locations 

soil may extend deeper into the bedrock profile through vegetation influence or filling of 

inactive karst features.  Average plot slope is two percent, although surface rocks and 

vegetation structures create a highly irregular surface topography.  The subsurface, 

which has been exposed only at the downhill end of the plot, consists primarily of 

limestone, with approximately 1 m of highly fractured limestone directly beneath the 

upper 30 cm of soil and rock.  A heavily-weathered marl layer of approximately 1m 

thickness occurs below this level, separated from the fractured layer by a clay lens 

varying from 2 to 45 cm in thickness.  Open fractures and solutional conduits are 

present, primarily in the fractured limestone layer.  

 The companion plot is approximately 100 m southwest of the main plot and 

occupies 98 m2 (7 x 14m) in a grass-vegetated area showing no indications of prior brush 

growth.  Herbaceous cover of the plot includes moderate to heavy growth of little 

bluestem, sideoats grama, and Texas wintergrass.  Mature prickly pear are common in 

the vicinity, with several inside the plot boundary.  Like the main plot, the companion 

plot displays coarse, granular soils.  Soil depth varies from approximately 7.5 to 15 cm 

within the plot boundary.  Average plot slope is two percent, with minimal presence of 

microtopographic features.  Exposure of the subsurface at the downhill end of the plot 

suggests a massive limestone subsurface with closed fractures present in limited 

numbers, with some possibility for the existence of solutional conduits.      
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Juniper plot layout 

 The main project plot initially located in juniper vegetation was 14 m long and 7 

m wide.  A perimeter wall consisting of 16-gauge galvanized metal sheeting extended 5 

cm into the soil, with 15 cm projecting above the soil.  This wall hydrologically isolated 

the upper portion of the soil profile from the surrounding area, preventing any water 

falling outside the plot from traveling through the soil layer and into the plot area.  

Additional isolation was provided by a 3.66 m wide border of polyethylene sheeting on 

the sides and upper end of the plot.   

 Two techniques were used to estimate throughfall.  The primary technique 

consisted of an array of 140 mm capacity plastic rain gauges.  Gauges were arranged in a 

grid within the plot with a 1 m by 1.7 m gauge spacing to collect throughfall readings, 

allowing researchers to determine both approximate throughfall amount and spatial 

distribution of throughfall near the plot surface.  For all standard simulations, gauge 

depths were recorded after each run, with the average reading used to represent 

throughfall over the plot surface.  An additional array of rain gauges located outside of 

the plot (with a coarser 2 m x 2 m spacing) was used for estimation of wind losses 

during simulations and for measurement of natural rainfall events between simulations. 

 Two trees in the plot were also equipped for stemflow measurement using 

apparatus similar to that described by Owens and Lyons (2004).  Water flowing down 

the stem was collected in a set of scoop-shaped plastic funnels attached to each major 

branch and conveyed to a tipping bucket gauge system with a resolution of 1 L.  

Measurements were scaled to the whole plot using a ratio of tree basal areas. 

   A 15.25 cm H-flume at the downhill end of the plot was used to measure surface 

runoff.  The water level in the flume was detected using a float and potentiometer system 

located in an adjacent stilling well.  Depth measurements could be converted to 

volumetric flow rates through a known relationship based on the dimensions of the 

flume.  A pipe then conveyed surface runoff away from the plot area. 

 Change in soil moisture storage was measured using ten ECH2O 10 (Decagon 

2005) dielectric soil moisture sensors located randomly throughout the plot.  Due to the 
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shallow nature of the upper soil layer the sensors were installed at shallow angles to 

ensure complete coverage of the probe surface.  All sensors were calibrated to measure 

gravimetric moisture content. 

 A trench (2 m wide, 2.5 m deep, and 10 m long) was installed at the downhill end 

of the plot to monitor lateral shallow subsurface flow.  The trench floor sloped 

downward and drained to a sump located at one end.  Subsurface flow collected in the 

sump, from which a float-activated pump conveyed it to a tipping bucket gauge array 

with a one-liter data resolution (that is, each liter of flow resulted in a signal to the 

datalogger).  In addition to the automatically-logged flow data, information was also 

collected for each simulation about how long each subsurface flow path contributing to 

the trench required to begin producing flow.  A lightweight roof over the trench isolated 

it from simulator overspray.   

 Ambient precipitation was measured using a rain gauge located outside the plot.  

Measurement resolution for this device was 0.25 mm. 

 Surface runoff, soil moisture, lateral subsurface flow, and precipitation were 

recorded on a CR21X datalogger, while throughfall and stemflow were recorded on a 

CR10X datalogger.  For both dataloggers sensor readings were averaged (or summed) 

and stored at one minute intervals during simulations and at fifteen minute intervals 

otherwise.  More detailed descriptions of equipment and data analysis procedures for 

both plots can be found in Appendix A.  An illustration of the juniper plot layout is 

shown in Figure 2.2 on the following page (with manual rain gauges omitted). 
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   Figure 2.2. Layout of components at Honey Creek juniper plot. 
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Grass plot layout 

 The grass plot occupied 98 m2 (7 m wide and 14 m long) in an area dominated by 

midgrass vegetation.  Like the juniper plot, the grass plot was isolated using metal 

sheeting and a 3.66 m wide polyethylene border.   

 At the grass plot, throughfall data were collected exclusively using an array of 

140 mm capacity rain gauges.  As with the juniper plot, gauge spacing was at a 1m by 

1.7 m grid.  Surface runoff was measured with a 15.25 cm H-flume system identical to 

the one used at the juniper plot.  Manual depth readings were also collected from the 

flume during simulations.  Due to problems with automatically recorded data, water 

budget calculations for the grass plot relied on the manual readings.  Soil moisture was 

recorded using ten randomly-located Echo 10 dielectric soil moisture probes. 

 A narrow trench (1 m wide, 2.5 m deep, and 9 m long) at the downhill end of the 

plot enabled researchers to observe shallow lateral subsurface flow.  Like the juniper 

plot trench, the floor sloped to a sump at one end.  However, for the grass plot, water 

flowing into the sump was measured manually using a holding vessel.  Water was 

conveyed from the sump to the vessel via a switch-operated pump. 

 Ambient precipitation between simulations was measured using a tipping bucket 

rain gauge located in the center of the plot.  Measurements of surface runoff, soil 

moisture, and precipitation were stored on a CR10X datalogger with a recording interval 

of one minute during simulations and fifteen minutes otherwise. 

  

Rainfall simulation 

 Although equipment in place at the plot monitored water movement on a 

continuous basis, the highly variable nature of natural rainfall precluded the possibility 

of observing near-identical rainfall events for both pre- and post-cut conditions.  While 

the hydrologic impacts of brush removal could conceivably be revealed by monitoring 

plot behavior during natural events, doing so would have required a prohibitively long 

study period.  Simulation also allowed for observation by key personnel during rainfall 

events (Porter 2005).  For this reason, the study relied primarily on an artificial rainfall 
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system that consistently recreated a certain set of rainfall conditions during both phases 

of the project.   

  This project used an elevated manifold rainfall simulator very similar to those 

used by Sorenson (2004) and Porter (2005) in prior studies.  The rainfall simulator 

apparatus used in this study, while similar in concept to traditional small rainfall 

simulators often used at the small plot scale, serves to apply water over a large area and 

at a broad variety of flow rates.  While this study attempted to limit the application area 

to the 98 m2 plot, a similar simulator for a companion study routinely produces wetted 

areas of approximately 500 m2 (Gregory 2006).  The simulator configuration at the 

project site allowed sustained application of rainfall at rates ranging from 2.5 to 25 cm/h; 

below a rate of 2.5 cm/h, the equipment cannot apply water in droplet form.  The 

simulator array consists of six telescoping masts (with maximum extension of 11 m) 

located along the sides of the plots and topped with manifolds feeding four sprinkler 

heads each.  Each sprinkler head is equipped with an independent valve, allowing the 

amount of water applied to be controlled by turning the sprinkler heads on or off.  

During simulation, water is pumped through collapsible vinyl hose from permanent 

storage tanks through a filter apparatus, flow meter, and pressure gauge.  A set of flow 

splitters located after the pressure gauge divides the flow, distributing an equal amount 

of water to each of the six masts.  Although flow rates are controlled primarily with the 

manifold valves, even small changes in hose positioning can alter flow rates from 

expected values.  For this reason, pump speed is adjusted at the beginning of each water 

application to achieve the desired flow rate.  While some components of the rainfall 

simulator system are portable (the pump, filter, conveyance lines, and pressure and flow 

meters), the masts are designed to be a semi-permanent feature and are not moved except 

for repairs.   

 

Simulation parameters 

 Three replications of a standard simulation were carried out both before and after 

brush clearing at the juniper plot and over the natural vegetation cover at the grass plot.  
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The standard simulation consisted of three distinct "runs" or intensity-duration pairs.  An 

initial "pre-wetting" run applied water at a rate of 102 mm/h for one hour to create 

similar initial moisture conditions among simulations for the subsequent applications.  

The second run applied water at a rate of 25 mm/h for two hours, while the final run 

applied 152 mm/h for 0.75 hours.  After each run, lateral subsurface flow was allowed to 

stop before beginning the next run.  Pre-cut simulations were carried out on 10/26/2004, 

6/1/2005, and 6/9/2005.  Post-cut simulations were carried out on 6/14/2005, 6/15/2005, 

and 6/28/2005.  For the grass plot, simulations were carried out on 7/6/2004, 8/10/2004, 

and 8/11/2004. 

 

Water budgeting 

 As stated earlier, the effects of brush clearing on the hydrology of the study site 

were determined using a comparison of pre- and post-clearing water budgets.  For this 

study, the relationship can be stated in its most simple form as: 

 

P = MSURF + MSUB + MDEEP + ∆S       [1] 

 

where P is applied rainfall, MSURF is a composite term for all movement of water off of 

the plot at or above the surface, MSUB is a composite term for subsurface water 

movement off of the plot area, MDEEP represents water movement from the plot to deeper 

horizons (recharge), and ∆S is a composite term for change in water storage within the 

plot volume.  Each of these terms can be subdivided into a number of other components 

or combinations of components which have been measured throughout the course of the 

study.  MSURF includes surface runoff, losses to wind and simulator overspray above the 

plant canopy, as well as interception of rainfall by the plant canopy itself.  MSUB includes 

shallow lateral subsurface flow through conduit, fracture, and soil matrix flow paths, 

while MDEEP accounts for movement of water to deeper geologic horizons.  The storage 

term ∆S represents change in water storage in the litter layer and soil as well as in 

subsurface conduits and fractures.  This study focuses on water movement at relatively 
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short timescales, with the period of observation extending from the beginning of water 

application to the end of lateral subsurface flow.  Because evapotranspiration during this 

period is assumed to be negligible, it is not included directly in the water budget.  Over 

longer periods of time water from the subsurface components mentioned below, 

particularly on-site storage, may be taken up by vegetation and converted to 

evapotranspiration losses. 

 

Results 

Water budgets 

 Water budgets for the juniper plot for pre- and post-cut conditions and for the 

grass plot are shown in Table 2.1.  All values given are percentages of water reaching 

the plot surface (the sum of throughfall and stemflow) rather than of bulk rainfall.  

Detailed water budgets for each standard simulation are given in Appendix B.  The 

column entitled Grass Plot (Estimated) gives a revised estimate of the grass plot water 

budget based on 30 percent by volume soil moisture storage change.  Individual 

components of the water budgets will be discussed in the following sections. 

 

 

 

 

 

 

 

  

 

 

 

 

 

1 

Table 2.1. Water budgets for Honey Creek juniper and grass plots. 
Values are given as a percentage of water applied to plot surface. 

1Assuming 30 percent volumetric soil storage change. 

Budget 
Component 

Pre-Cut Juniper Post-Cut 
Juniper

Grass Plot Grass Plot 
(Estimated)

Stemflow 16.8 0.0 0.0 0.0
Throughfall 83.2 100.0 100.0 100.0
Surface Runoff 0.0 0.0 31.9 31.9
∆ Soil Storage 5.1 2.5 ? 23.3
Trench Flow 56.7 43.4 5.0 5.0
Other Sub. Flow 38.1 54.1 ? 39.8
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Throughfall 

 Throughfall accounted for 83.2 percent of the water reaching the surface of the 

juniper plot prior to brush removal and accounted for all water reaching the surface after 

brush removal and in the grass plot.  Subsequent to brush removal, average throughfall 

totals were significantly higher (α = 0.1) for standard simulations.  Throughfall averaged 

112 mm for pre-cut simulations and 167.7 mm for post-cut simulations.  Uniformities of 

rainfall were calculated using the Christiansen Uniformity (CU) method (Tarjuelo et al 

1999).  For standard simulations at the juniper plot, pre- and post-cut uniformities were 

nearly identical, with an average CU of 58.9 percent with brush in place and 60.0 

percent after brush removal.  On a per-run basis only run 2 shows a statistically 

significant (α = 0.1) difference in uniformity between vegetation conditions, with 

slightly higher uniformity after brush removal.  Standard simulation uniformity for the 

grass plot was 58.4 percent, which was not significantly different (α = 0.1) from either 

vegetation condition at the juniper plot. 

 Results of an analysis of natural rainfall data contrast sharply with those from the 

standard simulations.  Comparing natural rainfall data from the juniper plot in the pre-

cut condition to the limited natural data for the post-cut condition and to natural data 

from the grass plot it appears that the uniformity of rainfall under the juniper canopy is 

significantly lower than for open conditions locally (α = 0.1).  Under precut conditions, 

average uniformity was 71 percent.  Post-cut, only two natural rainfall events were 

recorded, one with 87 percent uniformity and the other with 67 percent uniformity (very 

low rainfall).  For the grass plot, average uniformity was 91 percent but has been 

observed to be as high as 96 percent.   
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Stemflow 

 Stemflow (shown in Figure 2.3) accounted for 16.8 percent of water reaching the 

juniper plot surface for the pre-cut condition, ranging from 14.3 to 19.1 percent of water 

reaching the surface on a per-simulation basis.  On a per-run basis, the percentage of 

water reaching the surface in the form of stemflow showed no clear relationship to either 

application rate or total amount of water reaching the surface.  The lag time between the 

start of water application and the initiation of stemflow varied from 3 to 12 minutes, 

with an average and median delay of seven minutes.  There was a weak linear 

relationship (r2 = 0.56) between the intensity of above-canopy water application 

(pumping) rate and time required for stemflow initiation, suggesting that the lag time for 

initiation of stemflow may decrease as application intensity increases.  After the end of 

water application, stemflow persisted for three to six minutes, with an average and 

median residual flow time of five minutes.   

 An examination of stemflow hydrographs shows that for all of the runs with the 

exception of run 1 on 10/26/2004, stemflow begins rapidly and increases to a peak level, 

then remains at steady state until the end of water application, after which it rapidly 

returns to zero during the aforementioned post-application lag time.  The peak rate of  

stemflow varied from 0.07 to 0.35 mm/min and showed clear linear relationship to both 

pumping rate (r2 = 0.88) and total per-run stemflow amount (r2 = 0.89). 
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Figure 2.3. Stemflow for standard simulations at Honey Creek Juniper plot for (a) 
10/26/2004, (b) 6/1/2005, and (c) 6/9/2005.  Per-run stemflow is abbreviated as SF.
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Surface runoff 

No surface runoff occurred for the juniper plot for any standard simulation, nor 

for any simulations conducted at the project plot prior to the beginning of this study; this 

includes a simulated event with a nominal rainfall intensity of 250 mm/hr and duration 

of one hour.  However, ponding of water in the juniper plot was observed for all runs of 

the standard simulations.  The majority of ponded water was located on the uphill side of 

trees at the end of the plot near the trench, with smaller reservoirs behind other trees and 

in various locations throughout the plot.  Ponding of water occurred more quickly for 

runs 1 and 3 due to higher application rates, but even for the lower application rate for 

run 2, water began ponding within approximately 10 minutes.   

Surface runoff behavior for the grass plot is illustrated in Figure 2.4.  Surface 

runoff was the dominant observed outflow component for the grass plot, with surface 

runoff on a per-simulation basis varying from 19.5 to 54.0 percent of water reaching the 

surface and on a per-run basis varying from 7.1 to 75.5 percent of water reaching the 

surface.  Runoff for the grass plot began approximately 30 minutes after the beginning of 

water application for runs 1 and 2 under dry conditions, while for wet conditions the lag 

time for surface runoff was less than 20 minutes.  For standard simulations with dry 

antecedent conditions surface runoff for run 3 lagged water application by approximately 

15 minutes, while under wet conditions the surface runoff started within three minutes.  

Once surface runoff began, it rapidly increased to a peak rate.  After the end of water 

application, surface runoff decreased rapidly, although trace flow continued for up to 20 

minutes.  The amount of water moving as surface runoff (both in terms of total volume 

and as a percentage of water applied to the plot surface) appeared closely related to 

antecedent conditions.  For the standard simulation on 8/10/2004, which was carried out 

under the driest conditions, surface runoff accounted for only 19.5 percent of applied 

water; most of this water flowed during run 3.  In contrast, the simulation on 8/11/2004, 

which began under wet antecedent conditions, produced significant surface runoff for all 

runs, with overland flow accounting for more than 50 percent of applied rainfall. 
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Figure 2.4. Surface runoff for standard simulations at Honey Creek grass plot for (a) 
7/6/2004, (b) 8/10/2004, and (c) 8/11/2004.  
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Soil moisture storage change 

For the juniper plot, change in soil moisture storage constituted a small portion of 

the standard simulation water budgets, with 5.1 percent of surface applied water stored 

for pre-cut conditions and 2.5 percent for post-cut conditions.  Due to the influence of 

antecedent conditions, the small total amount of soil moisture storage, and the inherent 

variability (± 2 percent) in the soil moisture sensors (Decagon 2005), the difference 

between pre- and post-clearing soil moisture storage change was not found to be 

important. 

 Soil moisture responded rapidly to rainfall application, with moisture content 

sharply increasing and quickly reaching steady state shortly after rainfall initiation; 

moisture levels rapidly decreased after rainfall.  Overall behavior resembled a flow 

hydrograph, with the timing and pattern of soil moisture fluctuation resembling the 

hydrographs for stemflow and lateral subsurface flow (see Figure 2.5).  For some of the 

runs, average soil moisture content readings approached 70 percent volumetric water 

content, with readings from some individual probes of over 80 percent.  There was a 

great deal of variability in readings among individual soil moisture probes during the 

simulations; however, the gauges followed general patterns across the simulations.  The 

three gauges which tended to have the highest readings and sharpest changes in moisture 

for most of the simulations were located in areas near ponded water.  Thus, while drift 

from initial calibration may partially explain the anomalously high water content 

readings, it is likely that a true physical process is also responsible.  Volumetric soil 

moisture was also measured in a grid in the juniper plot (adjacent to the rain gauge grid) 

before and after rainfall application for one precut and one post-cut standard simulation.  

Average antecedent moisture was similar for both simulations but antecedent uniformity 

was higher for the post-cut simulation.  After simulation, the post-cut condition had a 

larger soil moisture storage change and higher uniformity. 
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Lateral subsurface flow to trench (trench flow) 

 For the grass plot, lateral subsurface flow to the trench represented only a small 

amount of the water budget, with 5.0 percent of water reaching the plot surface emerging 

as shallow subsurface flow.  As with surface runoff, trench flow at the grass plot showed 

a clear relationship to antecedent moisture, with the least flow (2.7 percent of 

throughfall) for the driest conditions and the highest flow (8.1 percent of throughfall) for 

very wet conditions.  Subsurface flow into the trench occurred exclusively at the soil-

rock interface, with flow beginning in discrete locations along the interface but rapidly 

transitioning to flow along the entire soil-rock margin.  Although this area was the first 

to become wet, lateral subsurface flow started after surface runoff for most of the runs. 

 Shallow lateral subsurface flow to the trench was the dominant outflow 

component observed at the juniper plot, as shown in Figure 2.6.  The majority of this 
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Figure 2.5. Soil moisture response for Honey Creek juniper plot for the standard 
rainfall simulation on 6/28/2005.
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flow enters the trench through discrete conduit and fracture features, although a small 

amount enters as matrix flow through dense clay pockets in the trench face.  Flow from 

preferential paths is rapid, with flow rates as high as 0.62 mm/min observed during 

standard simulations, although rates as high as 0.78 mm/min have been observed for 

other simulations.  

 Trench flow accounted for 56.7 percent of water reaching the plot surface for the 

pre-cut condition, with totals for individual simulations ranging from 41.3 to 70.9 

percent.  On a per-run basis the amount of surface applied water emerging as lateral 

subsurface flow in the trench ranged from 8.2 to 95.0 percent.  For post-cut conditions, 

43.4 percent of surface applied water moved to the trench, ranging from 40.4 to 47.4 

percent on a per-simulation basis and 19.2 to 82.3 percent on a per-run basis.  The 

percentage of surface-applied water moving to the trench was significantly lower (α = 

0.1) for the post-cut standard simulations.  On a per-run basis, only run 3 showed a 

significant difference, with a higher amount of observed lateral subsurface flow for the 

pre-cut condition.   

 Due to limitations on the maximum flow rate of the trench sump pump, the 

subsurface flow hydrographs from most of the standard simulations are somewhat 

distorted, with flow entering the trench more quickly than it could be pumped for runs 1 

and 3.  While this did not result in losses of measured water, it did mute flow peaks and 

create artificially long falling limbs on the hydrographs.  However, an examination of 

data collected at the plot from a previous pumping system reveals trends in the flow 

hydrographs for the pre-cut condition.  For this data, as application intensity increases, 

the relationship between application intensity and peak lateral subsurface flow rate to the 

trench becomes weaker.  That is, for events of approximately 50 mm/h surface 

application intensity (similar to run 1), maximum lateral subsurface flow rate was much 

higher than that for events of approximately 10 mm/h intensity (similar to run 2).  

However, when comparing a 50 mm/h event to one of 60mm/h (similar to run 3) or 

higher intensity, there was very little difference in maximum flow rate.  Both older data 

and data from the standard simulations show that while flow increased to a sharp peak 
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Figure 2.6. Lateral subsurface flow for standard simulations at Honey Creek juniper 
plot on (a) 10/26/2004, (b) 6/1/2005, and (c) 6/9/2005.
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Figure 2.6 continued. (d) 6/14/2005, (e) 6/15/2005, and (f) 6/28/2005 
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for the higher intensity runs, for run 2 the flow quickly reached a steady state and 

remained at this level until the end of water application. 

 While individual activation times for the major subsurface flow paths varied 

considerably among standard simulations, average activation times were similar for the 

two vegetation conditions; thus, no significant (α = 0.1) change in activation time for the 

subsurface flow paths was observed subsequent to brush removal.  Antecedent moisture 

conditions appeared to impact the lag time between water application and lateral 

subsurface flow to the trench; for both pre-cut and post-cut vegetation conditions conduit 

activation times were lowest for very wet antecedent conditions.   

 It is important to note that the lateral subsurface flow measured and reported in 

this study represents only the portion of flow moving in the direction of the surface slope 

and within the upper 2.5 m of the subsurface.  For both the juniper and grass plots water 

likely moves laterally through a number of flow paths which do not intersect the trench 

and thus are not measured. 

 

Canopy interception 

 Canopy interception (loss) cannot be measured directly, but is calculated as the 

difference between precipitation above the canopy layer and the amount of water 

reaching the top of the litter layer.  However, due to difficulty in estimating wind losses 

and the high out-of-plot overspray losses of the simulator, this method could not be 

reliably used for the current study.  One possible method to estimate interception is the 

interception relationship developed by Owens and Lyons (2004) for juniper on the 

Edwards Plateau.  In addition to problems in determining true rainfall rate, the structure 

of the simulation, with several large rainfall events in rapid succession, makes using this 

method unreliable.  While the standard simulations do not represent a single large storm 

due to the pauses between runs, the assumption that the canopy completely empties 

between runs is not plausible.  Additionally, the ashe juniper at Honey Creek have a 

multi-stemmed structure, while most ashe juniper monitored on the Edwards Plateau 

have a single-stemmed physiology.  
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 For the standard simulations, average canopy interception was determined by 

examining the difference in total water reaching the surface for the pre-cut and post-cut 

simulations.  Because wind and overspray losses take place before simulated rainfall 

reaches the plant canopy, any differences in water applied to the surface of the litter 

layer should be caused solely by canopy losses.  Using this method, average canopy 

interception for the pre-cut condition was 32.7 mm per simulation.  This value would 

account for 19.5 percent of water reaching the top of the plant canopy.  This study did 

not examine interception by the herbaceous vegetation in the grass plot or by leaf litter. 

 

Discussion 

Throughfall 

Due to removal of canopy interception losses, throughfall increased considerably 

for post-cut conditions.  While this is not surprising, it is somewhat unusual that for 

standard simulations the juniper plot under pre-cut conditions generated uniformities 

similar to the post-cut condition and the grass plot.  This is probably a function of the 

simulator apparatus itself, which produces uniformities between 58 and 73 percent 

(depending on flow rate) for very low wind conditions.  The standard simulations for the 

study plots were carried out under a variety of conditions, with the size of the simulator 

and the length of the simulations preventing control of wind conditions.  This also 

explains the greater difference in juniper and open plot uniformities for natural rainfall 

events, which are typically more even at the large plot scale. 

Another interesting question is why natural rainfall, though more evenly 

distributed than that from the simulator, averages only 91 percent uniformity.  This 

seems partially a function of rainfall event size; for example, a total variation of 10 mm 

across the plot for a 30 mm event would result in a much lower uniformity than a 10 mm 

variation for a 50 mm event.  Additional variability may also result from small variations 

in accuracy among the rain gauges.  Results for the grass plot show high uniformities (> 

93 percent) for events of approximately 50 mm or greater and less even distributions for 

smaller events.  One large event in August 2005 was observed to apply approximately 
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140 mm of rainfall with a total variation of less than 4 mm across the plot; this equates 

to an estimated application uniformity of over 99 percent. 

 

Stemflow 

 The fraction of applied water taking the form of stemflow for this study is 

considerably different from other studies of ashe juniper on the Edwards Plateau.  For 

the study of interception by Owens and Lyons (2004), at the highest rainfall levels 90 

percent of rainfall reached the top of the litter layer (although 5.6 percent was 

intercepted by the litter), with 4 percent of rainfall moving as stemflow (Owens and 

Lyons 2004).  This is equivalent to 4.4 percent of water reaching the surface, 

considerably lower than the 16.8 percent found for this study.  However, while both the 

Owens study and this project examine large rainfall events, it is important to note that 

the Owens study examined individual natural rainfall events of a variety of sizes and 

intensities, while the standard simulation for this project actually consists of several 

large rainfall events in rapid succession.  Several other rainfall simulator studies have 

been carried out at various locations throughout the Edwards Plateau region.  Comparing 

to other rainfall simulator research on the Plateau, the stemflow was higher than that 

reported by Sorenson (2004) at Sornora, Texas but lower than previous results at the 

Honey Creek plot by Porter (2005).  For the comparison to the Sorenson study, it is 

possible that some of the differences are due to simulation intensity and duration, plot 

scale, and number of trees.  It also seems quite likely that the multi-stemmed form of the 

trees at the Honey Creek area and the presence of branches down to the top of the litter 

layer may partially explain the greater amount of stemflow; this may explain differences 

from the Owens and Lyons (2004) study as well.  This does not, however, explain why 

Porter (2005) calculated a much higher proportion of applied water taking the form of 

stemflow, especially since the scaling factor for the trees was actually slightly smaller 

than that used for this study.  The most likely explanation seems to be a linkage between 

stemflow and ambient conditions.  While the data for the Porter study was collected in 

December, two of the three pre-cut simulations for this study took place in June under 
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rather warm conditions when the bark was probably dry prior to the beginning of 

simulation.  The rainfall simulation on 10/26/04, which was carried out under cooler 

conditions, showed greater per-run percentages of stemflow and higher peak stemflow 

rates.  Although seasonal variation in stemflow for ashe juniper has not yet been 

documented, the data from this study suggest that seasonal fluctuations in temperature 

and other ambient conditions may impact the stemflow component. 

 

Surface runoff  

 As stated earlier, for standard simulations at the juniper plot, no surface runoff 

was detected for either vegetation condition, while surface runoff played a significant 

role in the water budgets for standard simulations at the grass plot.  There are several 

surface and subsurface differences in the plots which could be responsible for these 

different behaviors.  Based on early data from the project plot prior to brush removal, 

Porter (2005) suggested that ponding in juniper-related microtopographic features, 

combined with focused water application from the large stemflow component of the 

water budget, promoted infiltration and prevented surface runoff.  However, the lack of 

surface runoff after brush removal rules out stemflow as a controlling factor in this 

process.  Although microtopographic ponding may play some role, it is important to 

keep in mind that these features do not hold a large volume of water at any particular 

time. 

 Based on observations made at both plots, differences in local runoff processes 

appear to be influenced by both soil and limestone subsurface characteristics.  While 

infiltration through grass plot soils is relatively rapid, especially at the beginning of 

rainfall simulation, soils at the grass plot are much less granular than those at the juniper 

plot; rock content for the grass plot soil layer was low as well.  Additionally, the solid 

bedrock observed in the grass plot trench, although not necessarily representative of the 

entire plot, may limit infiltration in some portions of the plot. 

 Unlike the grass plot, subsurface water movement at the juniper plot appears to 

be dominated by macropore flow in both the soil and limestone bed.  Soils at the juniper 
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plot appear to have been heavily impacted by the ashe juniper vegetation, with the upper 

portion of the soil layer including a considerable amount of partially decomposed litter 

incorporated into the soil structure.  The coarse, highly organic soils at the juniper plot 

display high infiltration capacities, with some locations in the plot with capacities of at 

least 6.8 mm/min (determined through concentrated water application directly to the top 

of the litter/soil).  Post-simulation excavations by Porter (2005) revealed that only the 

upper portions of the leaf litter and soil layers were wet, suggesting that almost all water 

movement to through these layers occurred via macropore flow.  Highly non-uniform 

soil moisture was also observed during manual testing with a TDR probe; during this 

testing, many locations in the plot remained too dry for probe insertion even after a 

standard rainfall simulation.  Below the soil layer, the highly fractured subsurface 

provides open flow pathways for rapid drainage. 

 This raises the question of how, if the coarse soils and fractured subsurface 

provide little resistance to water movement, ponding still occurs at the juniper plot.  It is 

likely that even though the juniper plot subsurface is highly fractured, some locations 

within the plot may have a locally solid subsurface.  Since water encountering this 

restriction must move laterally before encountering a nearby inlet, a nearby perched zone 

could be created.  This would be especially noticeable in locations with concentrated 

water application, such as the aforementioned stemflow into microtopographic features.  

 

Soil moisture storage change  

 Soil moisture storage change for the juniper plot for both pre- and post-cut 

conditions appears to be a relatively minor part of the total water budget.  Because the 

difference in calculated pre- and post-cut moisture change was less than the range of 

error for the probes, it appears that brush removal had no noticeable impact on the 

volume of water stored as soil moisture.  In fact, the values calculated for storage change 

may be an overestimate.  Values calculated for the water budget assumed an equivalent 

soil depth of 76 mm (305 mm with 75 percent rock content) based on excavations at the 

plot perimeter; average soil moisture change from the moisture proves was applied to 
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this entire layer.  However, for excavations subsequent to simulations by Porter (2005), 

the litter layer was observed to remain largely dry below a thin wet surface layer.  

Similar results were obtained using a small needle-type rainfall simulator on undisturbed 

litter samples in a laboratory setting.  Similar observations have been made for the soil 

layer as well, suggesting that very little of the soil layer truly stores significant moisture.  

There may be localized exceptions to this in the portions of the juniper plot where 

ponding occurs. 

 As noted in the results section, soil moisture response resembled a hydrograph, 

with volumetric water contents greater than realistic soil porosity values.  Due to the 

large amount of partially decomposed litter in the upper soil layer and the documented 

presence of preferential flow in both the litter and soil layers, macropore flow directly 

across the measuring surface of the probes seems likely.  This would explain both the 

unusually high volumetric water contents and the rapid increases and decreases in soil 

moisture. 

 The comparison of pre- and post-cut soil moisture uniformities is inconclusive.  

Although the greater total water input for the cleared condition may have influenced 

post-simulation moisture uniformity, throughfall uniformity is unlikely to have played 

any role due to similar application values for the two simulations.  Due to the potential 

effects of antecedent conditions, more data would be necessary to identify significant 

changes and contributing factors.   

 While soil moisture content was not recorded for the grass plot due to equipment 

problems, total storage change likely accounted for a considerable portion of applied 

water.  Although the soil was unlikely to reach complete saturation, the presence of a 

restrictive horizon, gradual bottom-up wetting of the soil layer observed at the trench, 

and high application volume for the standard simulation suggest that a large amount of 

available pore space was filled.  An estimated change in soil moisture from 20 to 50 

percent during a standard simulation would result in total soil storage of 45 mm of 

moisture, or about 23 percent of water applied to the plot surface.  While this scenario 
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represents the extreme estimate of change in soil moisture, storage change from the grass 

plot is clearly higher than that from the juniper plot and likely several times as large. 

 

Lateral subsurface flow to trench (trench flow) 

 Specific discussion of the individual lateral subsurface flow paths, contributing 

areas, and linkages to vegetation are discussed in detail in Chapter III.  It has been noted 

that for the grass plot lateral subsurface flow to the trench accounted for very little of the 

water budget and tended to occur after the beginning of surface runoff in spite of coming 

from the first portion of the soil layer to become wet at the trench exposure.  One 

possibility is that even though the soil stores a considerable amount of water, gravity 

drainage of water from the soils is still slow except in soil macropores.  Thus, the lateral 

subsurface flow component of the grass plot may represent gravity drainage of the 

macropore fraction of the soil.  Another possibility is that while the plot surface slopes in 

the direction of the trench, the subsurface may, at least for some portions of the plot, 

slope in a different direction; thus, true lateral subsurface flow may be greater than the 

amount observed at the project trench. 

 As noted in the results section, trench flow as a percentage of water reaching the 

surface for the juniper plot was higher for pre-cut conditions.  While some of the 

difference may be due to truncation of the run 3 data record for one of the post-cut 

simulations, field observations suggest that the majority of water for this run was 

accounted for.  Greater lateral subsurface flow into the trench prior to brush removal is 

likely due to the presence of the stemflow component, which accounted for nearly 17 

percent of water reaching the plot surface.  This considerable fraction of the water 

budget was focused in a very small area at the base of the juniper vegetation; dye tracer 

testing, discussed in greater detail in Chapter III, has shown the presence of connections 

between conduit flow paths and the basal area of a large juniper near the plot center.  

However, the numbers given reflect only lateral subsurface flow in the direction of the 

surface slope and in the upper few meters of subsurface; removal of stemflow 

contributions may simply allow water to move through lateral flow paths under the 
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trench or in a different direction.  Downward movement of water or on-site storage is 

also possible.  Observations of preferential flow through soil and litter layers and the 

rapid disappearance of ponded water suggest that water moves rapidly through the 

subsurface at the plot for either vegetation condition.   

 Because the trench is a large, artificial feature, one must consider the possibility 

that the presence of the trench itself impacts shallow subsurface flow.  Observations of 

fractures on the trench face suggest that they were not created during trench installation 

but rather are pre-existing subsurface features and were hydraulically active prior to 

trench installation.  Many of the fractures and conduits on the trench face show signs of 

weathering, discoloration, soil deposits, and the presence of fine roots.  However, it is 

highly likely that the trench has altered subsurface flow in some way.  For a similar 

rainfall simulation study at Sonora, Texas, plot hydrology was observed to change as a 

trench near the plot was enlarged (Sorenson 2004).  During natural rainfall events at the 

Honey Creek juniper plot, water has been observed to rapidly enter the trench from all 

sides rather than from the plot alone; for a number of intense summer thunderstorms, this 

flow has completely filled the trench.  After such events, water drains from the trench 

slowly and in some cases may persist for a week or more.  These observations suggest 

that (1) the trench serves as an artificial sink for local subsurface water movement and 

(2) the lateral subsurface flow paths intersected by the trench may have originally shown 

less dramatic flow response.  

 While it seems likely that subsurface flow has changed to some degree after 

trench installation, the net effect of this alteration on plot hydrology is unknown.  A shift 

in the direction of flow or dominance of particular flow paths does not necessarily 

equate to alterations of infiltration capacity or total volume of subsurface flow.  Without 

the influence of the trench at the juniper plot, water may have rapidly filled many 

subsurface flow paths, spilling over onto the surface and resulting in surface runoff.  It is 

also possible that subsurface flow would simply have moved through pathways other 

than those currently feeding the trench.  While it is not possible to determine which of 

these scenarios is representative of the juniper plot, several observations suggest that 
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runoff from the plot would be unlikely.  In addition to the high soil and litter 

permeability of the plot and the fractured nature of the subsurface, it is important to note 

that roughly half of the water reaching the plot surface moves through paths not 

intersecting the trench.  Also, additional testing at the plot has shown that not all areas of 

the plot contribute to the trench; some of these areas accept sustained inputs of 

approximately 380 mm/h with no surface runoff.  For these reasons, it seems probable 

that the net infiltration capacity of the plot has not been altered by trench installation. 

 

Interception 

 The value estimated for interception was considerably higher than expected.  

Although ashe juniper has been documented to intercept a large portion of annual 

precipitation, sixty percent of the storms in the area are less than 2.5 mm, for which 

interception is roughly 96 percent; the proportion of interception decreases with 

increasing storm size (Owens and Lyons 1996).  Using the exponential relationship 

developed by Owens and Lyons (1996) and assuming a 167 mm rainfall event estimated 

from post-cut throughfall, interception was estimated approximating the standard 

simulation as a single large event (since the canopy at the juniper plot has been observed 

to remain wet between runs).  Approximating as a single event resulted in interception of 

21.1 mm of moisture.  While there may be some error in this estimate as the size of the 

rainfall event falls slightly outside the range used to develop the interception equation, it 

is clear that the interception observed at the Honey Creek juniper plot is much higher 

than would be expected for ashe juniper on the Edwards Plateau.  However, the 32.7 mm 

estimate is not unreasonable, as the only changes to the plot between vegetation 

conditions were brush removal and lowering of the masts to 5 m.  Alteration of mast 

height is likely not a factor, since the travel distance from the manifolds to the ground 

was actually greater than from the manifolds to the plant canopy.  Thus, any difference 

in water reaching the plot surface is attributed to canopy losses.  Additionally, the 

original vegetation cover of the plot possessed characteristics conducive to high 
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interception, including a closed canopy with considerable overlap and a multi-stemmed 

physiology with dense branches beginning at the top of the litter layer. 

 

Other subsurface flow 

Of the water applied to the juniper plot surface for standard simulations, 38.1 

percent for pre-cut conditions and 54.1 percent for post-cut conditions was unaccounted 

for.  Although the destination of this water cannot be clearly determined, there are a 

number of possible pathways that could account for unmeasured outflows and storage.  

Results from dye tracer testing, discussed in greater detail in Chapter III, indicate that 

not all areas in the plot contribute to outflows at the trench.  Water entering the 

subsurface may have moved downward as recharge or through lateral subsurface flow 

paths bypassing the trench from below or to the side.  Lateral flow may also have 

traveled in pathways not parallel to the surface slope (that is, exiting through the sides of 

the plot). 

Due to the complex nature of the subsurface flow paths and the lag time between 

water application and flow into the trench, the conduits and fractures themselves 

probably store a considerable amount of water on site.  Additional storage could also 

occur in the caliche and marl layers in the plot subsurface.  Exchange of water between 

fractures and the subsurface matrix has been documented at the juniper plot (Dasgupta 

2005). 

 

Revised budgets 

 Table 2.2 presents revised water budgets, with values reported as a percentage of 

water applied to the top of the plant canopy (juniper or grass).  Interestingly, after 

accounting for interception, the percentages of rainfall observed as lateral subsurface 

flow to the trench are nearly identical for the pre-cut and post-cut conditions.  At the 

same time, the percentage of water moving through other subsurface paths remains much 

higher for the post-cut condition.  Thus, while both the volume and percentage of bulk 

canopy-level rainfall entering the trench was not impacted by brush removal, one can 
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conclude that removal of ashe juniper from the plot increased movement and storage 

through other subsurface pathways.  The primary mechanism of this alteration was likely 

increased total input after brush removal coupled with a lack of focused stemflow 

routing.   

 The revised budget for the grass plot also reveals interesting plot behavior.  The 

estimate of soil moisture storage change, which represents a hypothetical 30 percent 

volumetric storage increase, accounts for 23.3 percent of applied rainfall.  While this is 

nearly a quarter of the water budget, it leaves 39.8 percent of applied water unaccounted 

for.  There are a number of possible explanations for this large volume of unmeasured 

flow.  Soils in the uphill region of the plot may be deeper than expected, resulting in 

greater storage than estimated.  It is also possible that the bedrock slope does not closely 

match the surface slope, allowing water to flow away from the trench along the soil - 

bedrock interface.  The possibility exists that some slow movement of water to deeper 

horizons occurs at the grass plot.  Finally, viewed at longer timescales, water moving 

through these pathways may be taken up by plants and become lost through ET. 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

 This study revealed a number of impacts of brush removal on the partitioning and 

distribution of rainfall among multiple water budget components.  The volume of water 

Table 2.2. Revised water budgets for Honey Creek juniper and grass 
plots.  Values are given as a percentage of precipitation at canopy level. 

Budget 
Component 

Pre-Cut 
Juniper

Post-Cut 
Juniper

Grass Plot Grass Plot 
(Estimated)

Stemflow 13.5 0.0 0.0 0.0
Throughfall 67.0 100.0 100.0 100.0
Canopy Int. 19.5 0.0 0.0 0.0
Surface Runoff 0.0 0.0 31.9 31.9
∆ Soil Storage 4.1 2.5 ? 23.3
Trench Flow 45.7 43.4 5.0 5.0
Other Sub. Flow 30.7 54.1 ? 39.8
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reaching the plot surface as throughfall increased considerably after brush removal for 

the juniper plot, with an analysis of natural rainfall data suggesting that this increased 

input volume also reaches the surface with a much more uniform distribution.  The post-

clearing increase in throughfall and total surface input are primarily attributed to high 

canopy interception, which accounted for over 18 percent of water reaching the top of 

the plant canopy.  This interception was much higher than expected and may represent 

high canopy storage capacity resulting from a multi-stemmed tree physiology with dense 

branches along the entire length of the tree stems. 

 Stemflow represented a large input to the juniper plot for the pre-cut condition, 

with 16.8 percent of water reaching the surface moving as stemflow.  The majority of 

stemflow infiltrated quickly and some of this water was stored in surface depressions 

behind the juniper but disappeared quickly after the end of rainfall.  Interestingly, the 

results of the stemflow analysis suggest seasonal variation in stemflow capacity of 

juniper vegetation.  However, this behavior has not previously been documented for ashe 

juniper. 

 For the two project sites studied, surface runoff appears to be controlled by both 

soil and subsurface permeability, with juniper vegetation likely playing an important role 

in altering soil infiltration characteristics.  The high infiltration capacities of litter, soil, 

and the fractured limestone subsurface for the juniper plot precluded surface water 

movement beyond localized ponding.  In contrast, the less permeable soils and 

seemingly solid subsurface of the grass plot limited infiltration and allowed overland 

flow.  The presence of such drastically different responses for locations in close 

proximity highlights the high complexity of the Edwards Aquifer landscape. 

 Perhaps the most interesting conclusions of the study relate to subsurface water 

movement at the juniper plot.  The percentage of surface-applied water entering the 

trench as lateral subsurface flow was significantly higher for pre-cut conditions, possibly 

due to focused application of large amounts of water through stemflow; connections 

between juniper vegetation and conduit outlets in the trench were established through 

dye tracer testing.  The average percentage of bulk rainfall (rainfall at canopy level) 
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entering the trench was similar for both vegetation conditions, due to greater inputs after 

removal of the juniper canopy and its associated high interception.  Although lateral 

flow to the trench (as a percentage of estimated above-canopy rainfall) remained 

unchanged, total water movement to the subsurface through other paths did increase 

substantially.  While this is an encouraging sign for improved water yield, one must not 

automatically equate increased subsurface flow with increased recharge.  Considerable 

amounts of water may be stored on site in near-surface conduits, fractures, and soil 

pockets, or in porous or unconsolidated caliche and marl layers in the subsurface.  While 

this water could become available for herbaceous growth, it is unclear how much 

additional water might eventually contribute to groundwater recharge. 
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CHAPTER III 

DYE TRACER TESTING* 

 

Overview 

 Although shallow lateral subsurface flow is generally not viewed as a major 

component of most rangeland water budgets, it can be a significant flow pathway in 

some landscapes.  In the karst landscape of the Edwards Plateau in central Texas, rapid 

shallow subsurface flow has been observed to occur at far greater rates under juniper 

cover than for grassland vegetation.  The rapid subsurface flow at juniper sites has been 

observed through root macropores and in root mat layers at rock layer interfaces 

(Sorenson 2004) in addition to the more commonly witnessed flow through solutional 

conduits.  Similar results have been observed for ongoing studies on the southeastern 

Edwards Plateau north of San Antonio (at the Honey Creek State Natural Area), with 

significant subsurface macropore flow (through fractures and conduits) under juniper 

vegetation.  However, the relationship between macropore and solutional conduit flow 

and juniper vegetation has not yet been explicitly established.  

 In this study, a conceptual model for hydrologic changes due to juniper 

encroachment into grass rangeland has been developed based on observations of large-

plot scale study sites on the Edwards Plateau.  Juniper is conceptualized as altering local 

hydrology in a number of ways, including decreased surface runoff and ground surface 

evaporation and increased transpiration, canopy interception, and subsurface water 

movement.  The conceptual model also describes juniper as creating a shift from a 

uniform system with locally uniform vegetation cover, rainfall application, and 

evapotranspiration to a system with spatially non-uniform rainfall application, soil 

wetting, soil moisture, and evapotranspiration.  For this model, the preferential  

 

*Modified with permission from ASCE from "Large plot tracing of subsurface flow in 
the Edwards Aquifer epikarst" by Taucer PI, Munster CL, Wilcox BP, Shade B, 
Owens MK, Mohanty B. 2005. In Sinkholes and the Engineering and Environmental 
Impacts of Karst. ASCE: Reston, VA; 207 - 215. 
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movement of water begins at the plant canopy level, with a portion of the water captured 

by the plant canopy moving to the base of the tree as stemflow and reaching the surface 

in a highly non-uniform pattern.  This water is further focused through ponding in 

microtopographic features created by juniper roots and leaf litter.  Post-rainfall 

excavations in the research plot have shown that water infiltrates into the subsurface 

through preferential flow paths (likely created by juniper roots), leaving most of the 

littler layer dry.  Under-canopy areas in the research plot produce no surface runoff, even 

with simulated rainfall rates as high as 25 cm/hr.  This suggests that the entire under-

canopy area contributes to subsurface flow through preferential infiltration channels.  

Below the surface, flow occurs in three primary domains as described at the project plot 

by Dasgupta (2005), with the majority of flow moving rapidly through open limestone 

conduits and fractures, a smaller amount moving through narrower fractures, and the 

smallest amount of subsurface flow moving through matrix flow.  A fourth classification 

of movement along bedding planes has been suggested for the plot as well, based on 

high seepage rates observed at a clay lens/bedrock interface.  Since water enters the 

trench at a small number of discrete and isolated locations rather than through all of the 

large fracture networks in the trench face, the conceptual model describes subsurface 

flow paths under juniper cover at the research site as discrete flow paths, with minimal 

interconnection at the large plot scale (5 - 10 meters).  The conceptual model also asserts 

that the conduit and fracture flow domains are related largely to vegetation-associated 

surface areas, while seepage outlets are fed by flow over a broader surface area.  

Vegetation may influence the larger flow paths in a number or ways, including juniper 

root insertion, canopy interception, throughfall and stemflow routing, movement through 

the hydrophobic litter layer, and detention in micro-reservoirs created by the juniper 

trees. 

 The subsurface flow components of the conceptual model are of particular 

interest, given the importance of subsurface water movement to aquifer recharge and the 

potential for brush vegetation to interact with flow paths at a larger scale (reaching into 

the fractured rock) than native grassland vegetation due to greater rooting depths.  As 
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such, the primary objective of this research was to use surface-applied fluorescent tracers 

to evaluate the source, flow paths, and travel times of the lateral subsurface flow on 

juniper covered hillslopes on the Edwards Plateau to test several subsurface flow 

components of the conceptual model.  

 

Methods 

Project site 

 The research site is located in Honey Creek State Natural Area, located in the 

southeastern section of the Edwards Plateau, approximately 40 km north of downtown 

San Antonio, Texas.  The Honey Creek area consists of a hilly landscape with highly 

terraced "stairstep" topography.  The geology is also typical of the Edwards Plateau, 

with shallow, coarse soils underlain by the highly permeable karstified lower member of 

the Glen Rose Formation.  This karstified limestone has fractures and conduits that 

facilitate preferential flow paths below ground, as well as surface recharge features such 

as sinkholes.  Vegetation in the Honey Creek area consists of mixed grassland and 

brushland with woody growth dominated by ashe juniper (Juniperus ashei) and 

occasional oak trees.  Intercanopy spaces are typically occupied by grasses, primarily 

little bluestem, sideoats grama, and Texas wintergrass. 

 The research site is 7 x 14 m (98 m2) in a dense juniper forest and is 

hydrologically isolated from the surrounding area by a metal border extending to a depth 

of 5 cm below the soil surface.  Tree cover within the plot consists entirely of ashe 

juniper, with a canopy cover of nearly 100 percent.  Ground cover is characterized 

primarily by a 2.5 to 5 cm thick layer of juniper leaf litter, with minimal understory 

growth consisting of sparse grass clusters as well as immature agarita and prickly pear.  

The soil in the research plot is a granular sandy clay loam ranging from 2.5 to 15 cm in 

depth.  The average plot slope is 2%, although surface rock cover and juniper trunks and 

surface roots create highly irregular microtopography.  A 152 mm H-flume is installed at 

the down-slope end of the site to quantify surface runoff.   
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 To simulate rainfall above the plot's juniper canopy, water is pumped from 

storage tanks to manifolds located at the top of six masts installed around the plot.  Each 

manifold includes four irrigation sprinklers with 90° spray patterns, which can be opened 

or closed independently using valves to control rainfall application rate.  Possible 

simulated rainfall rates vary from 2.5 to 25 cm/hr. 

 The research site also includes a 10 m long by 2.5 m deep trench located at the 

downhill end of the plot to capture lateral subsurface flow.  Water flowing into the 

trench from outlets in the trench face moves to a collecting sump.  Lateral subsurface 

flow collected in the sump is pumped to a tipping-bucket measuring system that is used 

to determine the flow volume as a function of time.  Sixteen locations on the trench face 

have produced flow under simulated rainfall conditions since establishment of the 

trench.  However, not all locations produce flow for every rainfall event, with locations 

characterized by low flow or seepage requiring significant rainfall for activation.  Prior 

to tracer testing, flow locations were grouped into four regions based on outlet type and 

relative amount of flow.  Region A displays moderate flow through small conduits and 

fractures, while Region B exhibits high flows, primarily through larger conduits and 

fractures.  Regions C and D are seepage locations in at the top of clay lenses at the 

clay/limestone interface, with locations in Region D becoming active only after extended 

rainfall simulation.  The sampling sites are shown in Figure 3.1. 

 

Figure 3.1. Location of sampling points for dye tracer testing (Honey Creek juniper 
plot).  Modified from an original illustration provided by Surajit Dasgupta. 
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Dye application 

 Two tracer tests were conducted at the research site.  For both tests, Phloxine B, 

eosine, and uranine dyes were applied to the same locations within the plot.  Each dye 

was mixed with approximately 3.8 L of water and applied to the litter layer using a 

handheld garden sprayer.  Phloxine B was applied in a 0.3 m wide band at the downhill 

end of the plot, eosine was applied in a 0.3 m wide circular band around the base of a 

large juniper near the center of the plot, and uranine was applied in a 0.3 m wide band 

with its center 2.2 m from the uphill edge of the plot (see Figure 3.2).  For the first test, 

conducted on January 30, 2004, the masses of dye applied were 160 mg of Phloxine B, 

140 mg of eosine, and 40 mg of uranine.  These masses were chosen in accordance with 

concentrations that have provided positive dye detections in direct sinkhole dye 

injections.  Because the samples from the first test contained few clear dye signatures, 

dye masses for the second test (May 13, 2004) were increased by approximately 10  

times for Phloxine B and eosine and 25 times for uranine (since no uranine was detected  

 

Figure 3.2. Dye application areas.  Modified from an original illustration provided by 
Surajit Dasgupta. 
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in the first test).  Masses of dye for the second test were 1665 mg of Phloxine B, 1500 

mg of eosine, and 1000 mg of uranine. 

 

Rainfall simulation 

 For each test, rainfall was simulated in two stages, with the first stage consisting 

of a 2.5 cm/hr event lasting for four hours.  After the end of the first stage, lateral 

subsurface flow in the trench was allowed to stop before beginning the second stage 

simulation with an intensity of 15.2 cm/hr and duration of one hour.  The second stage of 

rainfall application began as soon as subsurface flow had decreased to a level that no 

longer allowed sampling (with essentially no lateral subsurface flow). 

  

Sampling procedure 

 For both tracer tests, water samples were collected from every location on the 

trench face which produced flow, with the first sample from each location collected at 

initiation of flow.  Succeeding samples were taken at regular intervals until the end of 

flow.  The time interval between samples depended on relative flow amount at each 

location.  The shortest intervals were used at high flow conduits and the longest time 

intervals were at the seepage locations.  For the first tracer test, major spring locations 

(B1 and B2) were sampled every two minutes, with remaining locations sampled every 

five minutes.  For the second test, sampling intervals were initially set at five minutes for 

high and medium flow locations and fifteen minutes for seepage locations.  For the 

period of decreasing flow at the end of the test, all locations were sampled at ten-minute 

intervals.  In order to prevent cross-contamination of samples, latex gloves were changed 

between sampling locations.  Water samples were collected in clean, unused vials and 

some seepage locations required pipettes for sample collection.  Fresh pipettes were used 

for each sample.  Samples were stored in a sealed, insulated container to prevent 

photodegradation of the dye contained in the samples. 
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Fluorescence analysis 

 Samples were scanned individually for fluorescence signatures using regular 

light wavelength intervals in a luminescence spectrometer.  Relative intensity values 

were generated for each wavelength increment and stored in tabular form.  A graphical 

display of relative intensity for each sample was used to determine dye signature peak 

height and central wavelength.  Due to the significant level of noise present in the 

intensity data and the possibility of overlapping dye peaks, raw sample data were 

analyzed with nonlinear curve fitting software using a Pearson Type VII Area function 

which fit a smoothed curve to the raw values.  The software also divided each intensity 

curve into component peaks representing background and dye signals.  Dye presence 

was confirmed by the application of a limit of detection set at five times the standard 

error of fitted to raw data (averaged over all samples for each location).  For samples 

exceeding the limit of detection an additional limit of quantification (the level above 

which dye intensity can be accurately quantified) of ten times the standard error was 

applied.  Intensity values were converted into concentrations through a linear 

relationship developed from spectrometer calibration standards of known concentration.  

The resultant concentrations were then arranged into time series by sampling location 

and time, with samples below the limit of quantification omitted. 

 

Results 

Test I 

 For the first tracer test, dye concentrations in all samples were generally very 

low, with only a small proportion of the samples collected exhibiting eosine and 

phloxine dye intensities above the limit of quantification.  Uranine was not detected in 

any sample from any location.  Location A1 produced samples with low quantities of 

eosine for approximately 2.75 hours.  Concentrations for this location averaged 0.62 ppb 

with a maximum eosine concentration of 0.96 ppb.  Locations A2 and A3 exhibited traces 

of eosine as well, although the eosine signatures at these locations were sporadic and all 

fell below the limit of quantification.  The results for sampling location B1 indicated the 
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presence of both eosine and phloxine in small concentrations, with eosine present shortly 

after flow and phloxine delayed until near the end of the test.  Eosine was present for 

2.83 hours, with the few quantifiable samples giving an average concentration of 0.54 

ppb.  Although phloxine appeared later, it demonstrated slightly higher concentrations 

(average of 1.1 ppb) for 1.03 hours.  B2 and B3 also produced small quantities of eosine 

shortly after the beginning of flow.  Locations B4, C1, C2, and C3 all had breakthrough 

curves for phloxine.  Almost no dye was detected for region D, with D1, D2, D3, and D5 

showing no detectable dye and location D4 showing two samples with confirmed 

phloxine presence. 

 

Test II 

 Overall, dye concentrations were much higher for the second tracer test, although 

once again no uranine was detected in any samples.  All of the conduit outlets (A1 and 

B2) and several of the fracture outlets (A2, A3, B2, and B3) produced samples with 

quantifiable amounts of both eosine and phloxine.  Location A1 produced breakthrough 

curves for both dyes, with eosine and phloxine present for almost the full duration of 

flow.  However, the two dyes were observed in nearly opposite patterns, with high 

eosine concentrations during the first stage of the simulation and high phloxine 

concentrations during the second stage.  For A2, no clear pattern could be found in the 

breakthrough curve, possibly due to gaps in the sampling interval.  At location A3, both 

dyes persisted for the full duration of flow, with eosine peaking after three minutes and 

then decreasing rapidly and phloxine steadily increasing to a peak at the 33-minute 

mark.  At locations B1 and B3 concentrations of phloxine and eosine both followed a 

pattern of increasing concentration during the first stage of rainfall simulation.  

However, for the second stage phloxine and eosine displayed different patterns, with 

peaks for eosine lagging behind those for phloxine.  This behavior was typical of the 

fracture outlets in the trench.  Behavior of the two tracers at B2 was very similar to one 

another, with concentrations of phloxine above those of eosine for most of the test.  The 

remaining fracture locations (A4 and B4) produced high concentrations of phloxine (400  
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Figure 3.3. Dye behavior at locations (a) B1, (b) B2, and (c) C2 for the second dye 
tracer test at the Honey Creek juniper plot.
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to 700 ppb), although the short duration of flow from these locations prevented the 

formation of a clear breakthrough curve. 

 The seepage locations in regions C and D also produced short time series of dye 

concentrations dominated almost entirely by phloxine, with only locations C1 and D4 

producing eosine signatures.  The dyes in samples at C1 had a similar pattern to those in 

B1 and B3, but with phloxine concentrations exceeding those of eosine by a greater 

amount.  For D4, eosine was detected at 2.40 ppb in a single sample.  For illustration of 

flow for each domain type see Figure 3.3, where the green and red lines represent run 

starts and stops respectively.  Results for all sampling locations producing dye signatures 

for test II are given in Appendix C.  

 

Discussion 

Tracer effectiveness 

 Before interpreting the results of the dye tracer test in relationship to the 

conceptual model, the effectiveness of the testing method itself must be evaluated.  As 

shown in the results of the second test, quantifiable dye concentrations were found for 

every sampling location and for a majority of samples.  In addition, at locations with 

long time series of dye concentrations reasonably smooth and coherent breakthrough 

curves were obtained.  The detection of dye concentrations in trench samples 

demonstrates the potential for the successful use of surface applied fluorescent tracers, 

and the breakthrough curves are excellent for flow studies in shallow epikarst. 

 However, the two tracer tests performed at Honey Creek reveal limitations to the 

use of surface applied dyes as well.  While sinkhole injection traces may encounter some 

problems with dilution, surface application appears to suffer to a much greater extent 

from dye loss through binding with organic leaf litter as well as subsurface clays.  

Currently there is no clear relationship which has been developed to predict the amount 

of dye required for tracer studies utilizing surface application.  One can clearly see this 

in the amounts of dye applied for the two tracer tests, which differed by orders of 

magnitude.   



 64

Contributing area 

 An examination of the results of the dye tracer tests suggests that not all under-

canopy areas contributed shallow lateral subsurface flow into the trench.  As noted 

earlier in the results section, the uranine dye applied at the rear portion of the plot was 

not detected in any sample for either test.  The rear portion of the research site does 

differs significantly in appearance from the forward portion, with a more level surface, 

lighter juniper cover, and more rock presence on the surface.  Because water is not 

observed to pond on the rear portion of the plot, nor to move through surface runoff to 

other plot sections (no uranine was detected in ponded water within the plot), it must be 

entering the subsurface at locations close to the dye application area.  There are a 

number of possible explanations for the lack of dye detections between the rear portion 

of the plot and the monitoring trench.  The simplest scenario is that the water entering 

the subsurface through the rear of the plot may simply move through flow paths which 

do not intersect the trench, moving around or under the excavation rather than following 

the slope of the ground surface.  As well, the rear portion of the plot may drain away 

from the trench.  With bedrock exposed at the ground surface, water in this area may 

have intersected some subsurface karst feature such as a solutionally enlarged vertical 

fracture, which allowed the water to travel down instead of laterally.  Another possibility 

is that hydraulic travel time from the rear portion of the plot greatly exceeded the rainfall 

simulation time so that flow did not persist long enough for dye to reach the front of the 

plot.  It is also possible that water from the rear portion of the plot did in fact reach 

outlets in the trench but arrived without retaining detectable levels of the uranine tracer, 

with the combination of loss of dye to the litter layer and through binding with flow path 

surfaces and clays resulting in complete capture of the applied uranine.  Since this 

distance is farther from the trench, there are correspondingly more opportunities for loss 

due to adsorption.  This issue requires additional research.  However, the lack of any 

uranine dye in the trench samples serves as a reminder of the high geologic variability 

which occurs even over small distances in karst.   
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Discrete flow paths 

 For discrete flow paths with little or no interconnection, each outlet would be 

associated with the signature of a single dye, with each conduit outlet associated with a 

well-defined contributing area on the plot surface.  The differences in hydraulic response 

times for the each outlet in the trench and the discrete spatial locations of the outlets in 

the trench face suggest that the subsurface flow paths intersecting the trench operate 

independently of one another.  However, the results of the tracer tests indicate that the 

flow paths are linked to multiple contributing zones within the plot.  Combining these 

two sets of observations suggests that the flow paths are highly connected, but also that 

all portions of the flow networks do not respond uniformly; they respond as the flow in 

each section changes, which is why we can see overall connectedness, but hydraulic 

individuality.  While only one location for the first test (B1) included both phloxine and 

eosine (probably due to low applied concentrations), the second test had eight of the 

sixteen sampling locations with strong signatures for both phloxine and eosine.  With 

half of the active sampling locations linked to multiple inlet locations, one must reject 

the conceptual model's assertion that flow paths under the plot's juniper canopy cover 

have minimal interconnection.  Therefore, there is high flow path interconnection, even 

over short (10 m) distances.  Subsequent testing using smoke injected into outlet A1 as a 

visible tracer confirmed flow path interconnection, with smoke emerging from locations 

A2, A3, B1, and B2 in the trench face.  Smoke was only observed to exit the trench face 

through cracks and fissures which have been observed to produce water flow.  It is also 

important to note that while there are clear connections between various flow paths, 

these connections are not uniform, due to the highly variable nature of this multiple-

scale permeability system. 

 

Inlet-outlet linkages 

 For the conceptual model, specific contributing area types are associated with the 

different flow domains, which corresponds partially to the findings of the dye tracer 

tests.  Matrix or slow flow through clay lenses was dominated almost entirely by water 
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from the forward portion of the plot, with only two of the eight seepage locations (C1 

and C4) sampled in the trench producing samples with eosine.  Only one of these 

locations (C1) produced a clear breakthrough curve.  The other location (C4) showed 

only a single sample with eosine.  This may be because these flow systems were moving 

too slowly to produce water from the rest of the plot during the trial period of 

approximately seven hours, because of dye loss from other parts of the plot to 

adsorption, or because the seepage locations are not as extensively connected, so only 

produced water from a very local flow network.  However, the conduit and fracture flow 

sampling locations in the trench contained high concentrations of eosine from the central 

tree area as predicted by the conceptual model.  However, as discussed in the analysis of 

flow path interconnection, samples from locations in regions A and B where conduit and 

fracture flow were observed contained both eosine and phloxine signatures.  

Interestingly, seven of the locations which produced breakthrough curves for multiple 

dyes are either conduits or open fractures.  Therefore, the conduit outlets in the trench 

face received water primarily from the surface in the plot where the central juniper tree 

was located.  Several trends in the data suggest that the central portion of the plot did 

contribute the majority of water to these outlets.  The strongest evidence is the closely 

timed appearance of both phloxine and eosine in samples from conduit and fracture 

outlets, with A2 and A3 displaying concurrent appearance and the others having eosine 

appearance lagging phloxine by 13 to 25 minutes.  In order for the eosine to travel 

laterally 7 m in the same or nearly the same time that phloxine traveled 1m laterally, 

flow from the central area of the plot must have been much more rapid, such as through 

conduits.  Such closely timed dye emergence could also come from the movement of 

eosine to the forward portion of the plot through ponding or localized overland flow.  

However, samples from ponded water between the central and forward portions of the 

plot showed no indications of any dye, making overland transport of eosine unlikely.  

Additionally, four of the seven major conduits and open fractures showed eosine 

concentrations peaking prior to phloxine.  This also suggests that eosine was transported 

rapidly through conduits, while phloxine had to infiltrate through the soil without the aid 
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of root-enlarged macropores before reaching the fractures or conduits in the underlying 

limestone. 

 

Travel times 

 Travel times for both water and dyes were clearly related to outlet type, with 

conduit  and large fracture outlets responding relatively quickly (producing flow in 2.5 

to 3.5 hours), with most of the smaller fractures taking slightly longer and most of the 

seepage locations responding only after five to six hours.  This was expected, since the 

larger conduits have frequently been observed to produce rapid flow of large volumes of 

water.  Lateral dye movement rates of eosine were higher for conduits and large 

fractures (up to 2.4 m/hr for at B1) than for smaller fractures (2.2 m/hr at B3) and seepage 

locations (1.9 m/hr).  Interestingly, locations C1 and C2, although operating in the 

seepage flow domain, became active shortly after location B2 began to produce flow.  

Their close proximity to the main outlet suggests that this may be due to linkage between 

the two regions.  Figure 3.1 shows cross-cutting stratigraphy at the trench scale.  This 

cross-cutting feature is probably a karst feature that has been filled.  The area 

surrounding this feature could be expected to have higher permeability and/or 

connectivity, due to the solutional activity that created the karst feature.  As such, it 

appears that flow path interconnections at the research site may, in addition to linking 

conduit flow paths, create linkages across flow domains, creating flow rates far in excess 

of those expected for the seepage domain.  This, combined with the fracture-like dye 

breakthrough response of C1, suggest that movement through bedding planes indeed 

forms an active flow domain under the plot.  Flow in karst aquifers in the phreatic zone 

is known to be able to integrate flow from conduits, fractures, and the matrix, and this 

study demonstrates similar effects in the epikarst. 
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Conclusions 

 The results of the dye content analysis lead to a number of important conclusions 

about the subsurface hydrology of the project site, including:  (1) surface applied 

fluorescent dyes are useful tracers for studies of water movement in shallow karst at the 

large plot scale, (2) flow direction at this scale is not predictable from topography, (3) 

high flow path interconnection exists even at short scales, (4) outlets with high flow rates 

are hydraulically connected to juniper land cover.  Based on these conclusions, the 

original suggestions of the conceptual model for discrete flow paths are rejected in favor 

of significant interconnection among flow paths, even over short distances.  However, 

the fourth major conclusion supports the conceptual model's assertion of a relationship 

between juniper vegetation and the outlets with high rates of lateral subsurface flow.  

Given the complex nature of subsurface flow paths in the area and the demonstrated 

potential for juniper to interact with the dominant flow domain, future studies must 

endeavor to gain a better understanding of these interactions and their effects on 

potential water yields from brush clearing. 
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CHAPTER IV 

CONCLUSIONS 

 

 Analysis of the results of standard simulation testing at the juniper and grass 

plots revealed a great deal about local hydrologic processes and the effects of brush 

removal.  As with other studies of ashe juniper, stemflow was observed to route large 

volumes of water directly to the base of trees.  However, stemflow totals from this study 

were much higher then values previously reported in the literature for ashe juniper on the 

Edwards Plateau.  While data was limited by the relatively small number of simulations 

at the plot, it also appears that stemflow may exhibit a seasonal variability not previously 

documented for ashe juniper.  An examination of runoff data reveals other interesting 

behavior.  Brush vegetation, including juniper, is often observed to play a major role in 

determining surface runoff behavior.  For this area surface runoff is controlled by both 

soil and subsurface structure, both of which vary considerably over short distances.  

Juniper appears to create major alterations in local soil structure and improved 

infiltration capacity. 

 Brush removal was shown to decrease the proportion of surface-applied water 

moving as shallow lateral subsurface flow to the trench.  However, the total amount of 

water reaching subsurface layers and possibly (although not certainly) traveling off-site 

through other pathways was increased after removal of juniper vegetation.  The 

increased water input is a direct result of brush removal, as interception accounted for 

the loss of an estimated 19.5 percent of standard simulation precipitation.  This loss is 

much higher than previous estimates of interception for a rainfall event of this size for 

Edwards Aquifer juniper vegetation.  While the additional water may not necessarily 

travel beyond the plot boundaries, it could provide on-site benefits including increased 

moisture availability for herbaceous growth.   

 The dye tracer experiments carried out at the juniper plot highlight the 

complexity of the karst geology of the Edwards Aquifer, even at small scales.  

Subsurface flow paths were highly interconnected, resulting in outlet linkages to 
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multiple contributing areas within the plot surface.  Test results also show the ability of 

surface and subsurface flow paths to move in different directions even at small scales, as 

demonstrated by the subsurface flow disconnect found between the middle and top of the 

plot.  Finally, a strong connection between juniper vegetation and conduit flow paths 

was discovered.  While the implications of this association are unclear, future standard 

simulations at the Honey Creek project site and at other locations on the Edwards 

Plateau may reveal more information on the impacts of brush removal over time on 

water yields.   
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Stemflow  

 Stemflow was measured directly on two of the six mature juniper trees located 

within the juniper plot.  Due to the multi-stemmed physiology of the trees and dense 

branches, the stemflow measurement system differed slightly from the basic stemflow 

collars used by Owens and Lyons (2004), Sorenson (2004), and Gregory (2006) in 

similar studies.  For this study, scoop-shaped funnels were attached to the undersides of 

major limbs and sub-stems.  Water flowing along these limbs was captured by the 

funnels and routed through tubing to a collar around the dominant stem.  Water captured 

directly by this collar and by the smaller contributing funnels then moved through a hose 

to an enclosed tipping bucket meter.  The bucket had a 1 L capacity, with each liter of 

flow causing the bucket to tip and send a signal to a datalogger.  The total number of tips 

was stored at one-minute intervals for standard simulations and at 15 minute intervals 

otherwise.  Drainage holes in the bottom of the tipping bucket enclosure allowed 

measured water to reach the base of the tree in an effort to minimize the impact of the 

measurement system.   

 Because only two of the six mature trees in the plot were instrumented, the 

values stored by the datalogger were scaled to represent the entire plot.  Note that while 

this study used a stemflow scaling factor of 3.38, similar to the value of 3.33 used by 

Porter (2005) at the plot for a previous study, the factors were determined in different 

ways.  Porter (2005) used a canopy cover ratio to derive a scaling factor, with the 100 

percent canopy cover for the plot divided by the 30 percent cover for the instrumented 

trees generating the scaling multiplier.  For this study, the stemflow scaling factor was 

based on trunk size.  Tree circumference was measured at ground level, with trunk cross-

sectional area approximated as a circle with a circumference equal to that measured.  

The scaling factor was calculated as the ratio of total tree basal area for the entire plot to 

the basal area of the two instrumented trees. 

 To determine total stemflow for a standard simulation run, stemflow values for 

both trees were added for the time interval of the run.  This value was multiplied by 3.38 

to represent the entire plot.  This value, in liters, was divided by 1000 for conversion into 
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m3 and then divided by the plot area of 98 m2 to give an equivalent depth in m.  To 

generate a final depth in mm, the depth was multiplied by 1000.  It is important to note 

that because stemflow represents a scaled value, uncertainty in the scaling factor may 

impact the stemflow estimate itself as well as estimates of total water reaching the plot 

surface.    

 

An example of stemflow calculation from formatted datalogger output is shown below: 

 

(1)  Formatted datalogger output 

Time 
(min)

Bucket   
#1 (L)

Bucket   
#2 (L)

Total  
(L)

0:00 0 0 0
0:01 0 1 1
0:02 1 2 3
0:03 1 2 3
0:04 0 1 1
0:05 1 0 1

Total (L): 9  
 

(2)  Scaling 

9 L * 3.38 = 30.42 L 

 

(3)  Conversion to m3  

30.42 L * (1 m3 / 1000 L) = 0.03042 m3 

 

(4)  Conversion to depth in mm 

(0.03042 m3 / 98 m2) * (1000 mm / 1 m) = 0.31 mm 
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Throughfall 

 As noted in Chapter II, throughfall was measured using both automated and 

manual systems.  The automated system, similar to that used by Owens and Lyons 

(2004), Sorenson (2004), and Gregory (2006), consisted of two sets of branched funnel 

arrays.  The photograph below shows a portion of the automated system used at the plot. 

 

 
 

 

 Water captured by the funnels traveled through PVC piping to an enclosed 

tipping bucket gauge system similar to that used to measure stemflow.  Throughfall 

resolution was finer than that for stemflow, with throughfall measured with 0.1 L (100 

mL) tipping bucket gauges.  Values recorded on the datalogger were summed and then 

scaled to represent the entire plot by multiplying by a scaling factor.  This factor was the 

ratio of total plot area to the throughfall funnel area.  Conversion of this total from L to 

mm followed the same procedure as stemflow, with the only difference being the value 

of the scaling factor.  Due to maintenance errors on the part of the author, the automated 

system failed to operate properly for most simulations; however, for simulations 

immediately following equipment lubrication, values from the automated system closely 

matched those from the manual system.  During brush clearing, the automated system 

was removed from the juniper plot and was not re-installed. 

Throughfall funnels and piping system. 
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 Throughfall was also measured using an array of rain gauges located throughout 

the plot on a 1 by 1.7 m grid.  These gauges were of the type commonly encountered in 

garden supply stores and had a maximum capacity of 140 mm.  Depths readings for the 

gauges were recorded after every run, with the gauges emptied after reading.  An 

estimated throughfall depth for the plot was generated by averaging the readings from 

the gauges in the array, with gauges falling over during simulations omitted from the 

calculation. 

 The manual gauge array was also used to calculate application uniformity using 

the Christiansen method, which is commonly used to assess the performance of 

irrigation sprinklers.  The Christiansen Coefficient of Uniformity (CU) can vary from 0 

to 100 percent (perfectly uniform) and is calculated using the equation 

 













−
−= ∑ =

xn
xx

CU
n

i i

*
1*100 1  

 

where xi is the depth for a particular gauge, x  is the average gauge reading, and n is the 

total number of gauges (Tarjuelo et al 1999). 
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Out of plot losses 

 The methodology section of Chapter II briefly mentions a rain gauge array 

surrounding the juniper plot, with gauges spaced at 2 m by 2 m for use in measuring 

wind and overspray losses.  Gauges were of the same type used for the manual array 

within the juniper and grass plots.  This out-of-plot array was originally intended to 

allow for interception estimation for individual pre-cut standard simulations.  Averaging 

of these gauges would give total out-of-plot losses, which when subtracted from pumped 

volume would reveal canopy-level precipitation.  The difference between this 

precipitation and water reaching the surface (throughfall + stemflow) would represent 

interception. 

 However, testing of this method under post-cut conditions revealed severe under-

estimation of overspray losses.  For post-cut conditions, the average out-of-plot gauge 

value should have represented the difference between pumped and throughfall depths but 

only showed about half of the actual loss.  This poor performance was likely due to the 

coarse 2 m by 2 m grid spacing and the fact that most overspray was observed to fall in 

the two meters between the plot border and the first row of out-of-plot gauges.  Due to 

the low reliability of the wind and overspray loss estimate, this technique was abandoned 

as a method of estimating canopy interception. 
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Interception  

 As noted in the body of the thesis, canopy interception for the pre-cut standard 

simulations was estimated to be 32.7 mm.  This estimate came from a comparison of 

total inputs to the juniper plot surface for pre- and post-cut conditions.  Because similar 

volumes were pumped for both conditions, the difference in water reaching the ground 

was attributed to vegetation change.  For the pre-cut standard simulations, 403.9 mm of 

water reached the plot surface (as throughfall and stemflow), while after cutting 503.2 

mm were recorded as throughfall.  Dividing the difference of 99.3 mm by 3 (the number 

of pre-cut standard simulations) gave an average interception of 33.1 mm. 

 Due to pumping of a slightly larger volume of water during post-cut standard 

simulations, a scaling factor was applied to the interception estimate.  Prior to brush 

removal, 830.7 mm were pumped, while for post-cut simulations 841.2 mm were 

pumped.  The original 33.1 mm interception estimate was multiplied by 830.7 / 841.2, 

yielding a corrected estimate of 32.7 mm. 
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Surface runoff  

 Surface runoff was measured using a 6-inch H-flume located at the downhill end 

of each plot.  Due to the metal border around the plots, the flume was the only location 

where surface runoff could leave the plot area.  The flume was manufactured with a very 

specific shape and dimensions so that the relationship between volumetric flow rate and 

depth in the flume were related according to a known equation.  Actual measurement of 

depth was taken in a stilling well adjacent to the flume (the box structure attached to the 

flume as shown in the photograph).  This stilling well was connected hydraulically to the 

flume through several small holes which allow water to flow between them.  Water in 

the stilling well was at the same level as that in the flume but was far less turbulent, 

making measurement of depth much easier.  A float within the stilling well could move 

up and down with the water level and was connected by a wire to a spindle at the top of 

the well.  Movement of the float thus caused rotation of the spindle, which transmitted a 

signal to the datalogger.  The datalogger then converted the signal to a depth value and 

stored an average depth once each minute.  Depth values could be converted to 

volumetric flow rate in L/min using an equation based on the dimensions of the flume.  

The equation used for this study was y =  2378.95*(x^2.129), where y is flow rate in 

L/min and x is depth in feet.  This value could then be converted to an equivalent depth 

for each 1-minute recording interval by dividing by the plot area of 98 m2.  Summing of 

depths across a certain time interval represented the total surface runoff amount during 

that interval.  However, this process was not applied at the Honey Creek juniper plot as 

no surface runoff occurred. 

 For the grass plot equipment problems prevented recording of surface runoff data 

by the datalogger.  For grass plot standard simulations, manually recorded depths 

reading taken at the flume at approximately three to five minute intervals were used to 

estimate surface runoff volume for each run. 
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Soil moisture storage  

 Soil moisture was measured using ten ECH2O probes (Decagon 2005) located 

randomly throughout the plot.  Probes were inserted into the soil below the litter layer, 

with the measurement surface of the probe inserted at an angle as subsurface rocks 

prevented vertical insertion.  For these probes, probe output in millivolts is related to soil 

water content.  For this study, the probe voltage was stored on the datalogger at one 

minute intervals and later converted to gravimetric water content (g water/ g soil) 

through a calibration equation derived by Dr. Keith Owens.  The calibration equation is 

y = 0.1905 * x - 62.182, where x is sensor output in mV and y is gravimetric water 

content in g/g.  The gravimetric content was then converted into volumetric water 

content by multiplying by the bulk density of the soil (0.88 g/cm3) and assuming an ideal 

1 g/cm3 water density.   

 Volumetric water content readings from the ten individual probes were then 

averaged to generate a single value representing the entire plot.  To ensure that the ten 

probes provided sufficient data for a representative average, measurements were made 

throughout the plot on a 1 by 1.7 m grid using a TDR probe and compared to the ECH2O 

probe readings from the same time period.  Average moisture contents and data standard 

deviations were similar for both methods, suggesting that the ten-probe average is a 

reliable approximation.  Readings from any probe displaying clearly erroneous results 

(water contents < 0 percent or > 100 percent) were omitted from the average for the 

entire standard simulation.  Soil moisture storage change was calculated as the difference 

in soil water content values before and after each run.  Initial soil moisture was 

considered to be the moisture immediately before the start of the run and final moisture 

was the moisture reading from immediately before the following run.  For the third run 

of each standard simulation, final moisture was determined at 45 minutes after the end of 

rainfall application.  Calculation of total soil moisture storage required estimation of 

total soil volume.  Based on subsurface exposure at the and a pit adjacent to the plot as 

well as from probing within the plot itself, the soil layer extended to an estimated depth 

of approximately 30 cm with a rock content of 75 percent.  This was equivalent in 
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volume to a continuous soil layer 76 mm in depth.  Water content of the plot was found 

by multiplying the averaged volumetric water content by this depth, giving total storage 

in mm.  Note that this storage term includes considerable uncertainty due to the limited 

data available for soil volume estimation and the fact that moisture was measured only in 

the upper portion of the soil horizon.  An example of soil moisture storage change 

calculation for a given ten minute period is shown below: 

 

(1)  Datalogger output 

Time #1 #2 #3 #4 #5
0:00 549.7 344.4 453.4 399.3 391.9
0:01 551.1 347.1 453.4 403.3 392.6
0:02 553.8 362.5 457.4 410 442.1

. . . . . .

. . . . . .

. . . . . .
0:10 574.5 365.8 486.2 453.4 457.4

 Probe Output (mV)
Soil Moisture Probe Results from Datalogger

 
  

(2)  Output converted to volumetric water contents 

Time #1 #2 #3 #4 #5 Average
0:00 37.4 3.0 21.3 12.2 11.0 17.0
0:01 37.7 3.5 21.3 12.9 11.1 17.3
0:02 38.1 6.0 22.0 14.0 19.4 19.9

. . . . . . .

. . . . . . .

. . . . . . .
0:10 41.6 6.6 26.8 21.3 22.0 23.6

Volumetric Water Content (%)
Converted Soil Moisture Probe Results

 
 

(3)  Change in volumetric storage 

∆Storage = Final Content - Initial Content = 23.6 % - 17.0 % = 6.6 % 

 

(4)  Converstion to depth 

Depth Stored =  ∆Storage * Equivalent Soil Depth = 6.6 % * 76 mm = 5.0 mm 
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Lateral subsurface (trench) flow 

 Trench flow was measured using a tipping bucket system similar to those used 

for stemflow and throughfall.  Water emerging from the trench face flowed down the 

face and into a narrow channel running the length of the trench along the bottom of the 

trench wall.  This channel sloped downward to a shallow sump at one end of the trench.  

The sump contained a submersible pump as well as a float switch which activated the 

pump when the water in the sump reached a certain level.  This water was then pumped 

to a set of three tipping bucket gauges (1 L capacity each), with the total number of 

signals from each bucket stored on a datalogger at one minute intervals during standard 

simulations and at fifteen minutes otherwise.  Water from the tipping bucket apparatus 

was then routed away from the plot using long pipes to prevent it from flowing back into 

the trench.  Conversion of datalogger data from L to mm followed the same procedure as 

applied to stemflow and throughfall but without application of a scaling factor.  The 

grass plot trench also included a gently sloping floor and sump to route shallow lateral 

subsurface flow to a single location.  However, due to the small amount of lateral 

subsurface flow at the grass plot, measurement of water entering the sump was 

performed manually using a graduated vessel rather than with a tipping bucket system. 
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APPENDIX B 
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Table B1:  Juniper Plot Standard Simulation (10-26-2004):  Pre-cut    
            
Test Description          
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 111.6 4"/h, 1h     
2 2 h 50.8 62.5 1"/h, 2h     
3 45 min 114.3 114.4 6"/h, 0.75h     

            
            
Data Summary  Depth (mm)   

No. Items Run 1 % Run 2 % Run 3 % Total 
% of 

Applied 
1 Water applied to plot surface 63.6 100.0% 27.8 100.0% 53.1 100.0% 144.5 100.0%
2 Stemflow 13.3 20.9% 7.4 26.5% 0.0 0.0% 20.6 14.3%
3 Throughfall (manual) 50.3 79.1% 20.4 73.5% 53.1 100.0% 123.8 85.7%

           
4 Surface Runoff 0.0 0.0% 0.0 0.0% 0 0.0% 0.0 0.0%
5 Soil moisture storage change 4.0 6.3% 5.0 18.0% -2.1 -4.0% 6.9 4.8%
6 Lateral subsurface flow 19.6 30.8% 23.0 82.9% 40.3 75.8% 82.9 57.4%
7 Unaccounted 40.0 62.9% -0.3 -1.0% 15.0 28.2% 54.7 37.9%

 

Ambient Conditions:  Overcast, wind 0 - 8 kph. 

Rainfall for Previous Week: ? 

Comments:  The plot was not extremely wet but appeared to have received a small amount of precipitation recently. 
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Ambient Conditions:  Sunny, temperature 26.7 °C, wind 0 - 3.2 kph. 

Rainfall for Previous Week: 72 mm 

Comments:  The plot surface appeared very wet due to rain early on the morning of the standard simulation.  The subsurface 

seemed to be dry based on examination of the trench.  The week leading up to this simulation was warm. 

 

 

Table B2:  Juniper Plot Standard Simulation (6-1-2005):  Pre-cut    
             
Test Description         
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 108.7 4"/h, 1h     
2 2 h  50.8 64.2 1"/h, 2h     
3 45 min 114.3 105.3 6"/h, 0.75h     

             
             
Data Summary   Depth (mm)   

No. Items Run 1 %  Run 2 % Run 3 % Total 
% of 

Applied 
1 Water applied to plot surface 48.4 100.0% 25.0 100.0% 53.6 100.0% 127.0 100.0%
2 Stemflow 8.5 17.5% 4.0 15.9% 9.5 17.7% 21.9 17.2%
3 Throughfall (manual) 39.9 82.5% 21.0 84.1% 44.1 82.3% 105.1 82.8%

            
4 Surface Runoff 0.0 0.0% 0.0 0.0% 0 0.0% 0.0 0.0%
5 Soil moisture storage change 4.4 9.1% 1.3 5.4% 1.7 3.1% 7.4 5.8%
6 Lateral subsurface flow 4.0 8.2% 11.2 45.0% 37.2 69.4% 52.4 41.3%
7 Unaccounted 40.0 82.6% 12.4 49.7% 14.7 27.5% 67.1 52.9%
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Ambient Conditions:  Partly cloudy, temperature 32.2 °C, wind 8 - 16 kph. 

Rainfall for Previous Week:  ? 

Comments:  The plot was extremely wet during this standard simulation due to a simulated rainfall event on the previous day 

(which was not included in the analysis due to equipment problems). 

 

 
 
 
 
 
 
Table B3:  Juniper Plot Standard Simulation (6-9-2005):  Pre-cut    
             
\Test Description         
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 99.3 4"/h, 1h     
2 2 h 50.8 57.4 1"/h, 2h     
3 45 min 114.3 107.2 6"/h, 0.75h     

             
             
Data Summary   Depth (mm)   

No. Items 
Run 

1 % 
Run 

2 % 
Run 

3 % Total 
% of 

Applied 
1 Water applied to plot surface 53.5 100.0% 26.0 100.0% 52.9 100.0% 132.4 100.0%
2 Stemflow 9.6 17.9% 4.1 15.7% 11.7 22.1% 25.3 19.1%
3 Throughfall (manual) 44.0 82.1% 21.9 84.3% 41.2 77.9% 107.1 80.9%

            
4 Surface Runoff 0.0 0.0% 0.0 0.0% 0 0.0% 0.0 0.0%
5 Soil moisture storage change 4.8 9.0% 0.4 1.7% 1.2 2.2% 6.4 4.9%
6 Lateral subsurface flow 23.3 43.5% 20.3 78.2% 50.3 95.0% 93.9 70.9%
7 Unaccounted 25.4 47.4% 5.2 20.1% 1.5 2.8% 32.1 24.2%
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Ambient Conditions:  Sunny. 

Rainfall for Previous Week:  ?  

Comments:  Plot was wet due to preceding standard simulations on 6/8/05 and 6/9/05. 

 

 

Table B4:  Juniper Plot Standard Simulation (6-14-2005):  Post-cut    
             
Test Description         
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 108.3 4"/h, 1h     
2 2 h 50.8 59.8 1"/h, 2h     
3 45 min 114.3 111.6 6"/h, 0.75h     

             
             
Data Summary   Depth (mm)   

No. Items Run 1 % Run 2 % Run 3 % Total 
% of 

Applied 
1 Water applied to plot surface 67.1 100.0% 38.9 100.0% 66.4 100.0% 172.4 100.0%
2 Stemflow 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%
3 Throughfall (manual) 67.1 100.0% 38.9 100.0% 66.4 100.0% 172.4 100.0%

            
4 Surface Runoff 0.0 0.0% 0.0 0.0% 0 0.0% 0.0 0.0%
5 Soil moisture storage change 0.7 1.0% 9.3 23.9% -9.8 -14.7% 0.2 0.1%
6 Lateral subsurface flow 15.9 23.8% 23.1 59.3% 42.7 64.3% 81.7 47.4%
7 Unaccounted 50.4 75.2% 6.5 16.7% 33.5 50.4% 90.4 52.5%
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Ambient Conditions:  Sunny.   

Rainfall for Previous Week:  ?  

Comments:  The plot was extremely wet due to standards simulations on 6/8/05, 6/9/05, and 6/14/05. 

 

 

Table B5:  Juniper Plot Standard Simulation (6-15-2005):  Post-cut    
             
Test Description         
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 105.8 4"/h, 1h     
2 2 h 50.8 76.1 1"/h, 2h     
3 45 min 114.3 92.3 6"/h, 0.75h     

             
             
Data Summary   Depth (mm)   

No. Items Run 1 % Run 2 % Run 3 % Total 
% of 

Applied 
1 Water applied to plot surface 65.2 100.0% 34.9 100.0% 69.3 100.0% 169.4 100.0%
2 Stemflow 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%
3 Throughfall (manual) 65.2 100.0% 34.9 100.0% 69.3 100.0% 169.4 100.0%

            
4 Surface Runoff 0.0 0.0% 0.0 0.0% 0 0.0% 0.0 0.0%
5 Soil moisture storage change 5.7 8.8% 1.3 3.8% 0.8 1.1% 7.8 4.6%
6 Lateral subsurface flow 12.5 19.2% 28.7 82.3% 27.2 39.2% 68.4 40.4%
7 Unaccounted 46.9 72.0% 4.9 13.9% 41.4 59.7% 93.2 55.0%



   

 

96

 

Ambient Conditions:  Sunny.   

Rainfall for Previous Week: ?  

Comments:  The plot appeared very dry prior to this standard simulations.  While considerable water had been applied to the 

plot during the month of June, the period between this simulations and the preceding one on 6/15/05 was extremely warm. 

 

 

 

Table B6:  Juniper Plot Standard Simulation (6-28-2005):  Post-cut    
             
Test Description         
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 119.4 4"/h, 1h     
2 2 h 50.8 64.3 1"/h, 2h     
3 45 min 114.3 103.5 6"/h, 0.75h     

             
             
Data Summary   Depth (mm)   

No. Items Run 1 % Run 2 % Run 3 % Total 
% of 

Applied 
1 Water applied to plot surface 63.5 100.0% 34.6 100.0% 63.3 100.0% 161.4 100.0%
2 Stemflow 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%
3 Throughfall (manual) 63.5 100.0% 34.6 100.0% 63.3 100.0% 161.4 100.0%

            
4 Surface Runoff 0.0 0.0% 0.0 0.0% 0 0.0% 0.0 0.0%
5 Soil moisture storage change 3.1 5.0% 12.0 34.8% -10.4 -16.5% 4.7 2.9%
6 Lateral subsurface flow 24.0 37.8% 20.7 59.8% 23.3 36.8% 68.0 42.1%
7 Unaccounted 36.3 57.2% 1.9 5.5% 50.5 79.7% 88.7 55.0%



   

 

97

 

Ambient Conditions:  Partly cloudy, temperature 33.3 °C, wind 8 - 24 kph. 

Rainfall for Previous Week:  ? 

Comments:  The plot appeared to have moderate antecedent moisture conditions prior to simulation. 

 

 

 

Table B7:  Grass Plot Standard Simulation (7-6-2004)    
            
Test Description          
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 130.2 4"/h, 1h     
2 2 h 50.8 60.7 1"/h, 2h     
3 45 min 114.3 117.5 6"/h, 0.75h     

            
            
Data Summary  Depth (mm)   

No. Items 
Run 

1 % Run 2 % Run 3 % Total 
% of 

Applied 
1 Water applied to plot surface 57.6 100.0% 31.3 100.0% 60.5 100.0% 149.5 100.0%
2 Stemflow 0.0 0.0% 0.0% 0.0% 0.0 0.0% 0.0 0.0%
3 Throughfall (manual) 57.6 100.0% 31.3 100.0% 60.5 100.0% 149.5 100.0%

           
4 Surface Runoff 8.7 15.2% 2.2 7.1% 32.0 52.9% 43.0 28.8%
5 Soil moisture storage change ? ? ? ? ? ? ? ?
6 Lateral subsurface flow 2.3 4.0% 5.0 16.0% 4.1 6.7% 11.4 7.6%
7 Unaccounted ? ? ? ? ? ? ? ?
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Ambient Conditions:  Partly cloudy, temperature 32.2 °C, wind 0 - 16 kph.   

Rainfall for Previous Week: 12 mm 

Comments:  The subsurface at the grass plot was dry in spite of a small rainfall event the previous day. 

 

 

 

Table B8:  Grass Plot Standard Simulation (8-10-2004)    
            
Test Description          
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 68.1 4"/h, 1h     
2 2 h 50.8 28.3 1"/h, 2h     
3 45 min 114.3 60.9 6"/h, 0.75h     

            
            
Data Summary  Depth (mm)   

No. Items 
Run 

1   Run 2   Run 3   Total 
% of 

Applied 
1 Water applied to plot surface 68.1 100.0% 28.3 100.0% 60.9 100.0% 157.2 100.0%
2 Stemflow 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%
3 Throughfall (manual) 68.1 100.0% 28.3 100.0% 60.9 100.0% 157.2 100.0%

           
4 Surface Runoff 11.4 16.7% 2.2 7.8% 38.8 63.7% 52.4 33.3%
5 Soil moisture storage change ? ? ?  ? ? ? ? ?
6 Lateral subsurface flow 0.5 0.7% 1.0 3.4% 2.7 4.5% 4.2 2.7%
7 Unaccounted ? ? ?  ? ? ? ? ?
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Ambient Conditions:  Sunny, temperature 35.6 °C, wind 0 - 8 kph.    

Rainfall for Previous Week:  ? 

Comments:  The plot was extremely wet due to the standard rainfall simulation on the preceding day as well as at least one 

natural rainfall event. 

 

 

 

Table B9:  Grass Plot Standard Simulation (8-11-2004)    
            
Test Description          
Run Duration Target (mm) Actual (mm) Notes     

1 1 h 101.6 113.6 4"/h, 1h     
2 2 h 50.8 61.1 1"/h, 2h     
3 45 min 114.3 109.0 6"/h, 0.75h     

            
            
Data Summary  Depth (mm)   

No. Items 
Run 

1   Run 2   Run 3   Total 
% of 

Applied 
1 Water applied to plot surface 70.6 100.0% 38.0 100.0% 63.7 100.0% 172.3 100.0%
2 Stemflow 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%
3 Throughfall (manual) 70.6 100.0% 38.0 100.0% 63.7 100.0% 172.3 100.0%

            
4 Surface Runoff 34.5 48.8% 10.6 28.0% 47.9 75.2% 93.0 54.0%
5 Soil moisture storage change ? ? ? ? ? ? ? ?
6 Lateral subsurface flow 2.9 4.1% 5.2 13.7% 5.9 9.3% 14.0 8.1%
7 Unaccounted ? ? ? ? ? ? ? ?
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Figure C1:  Dye behavior for tracer test II at location A1 at the juniper covered plot at Honey Creek.   
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Figure C2:  Dye behavior for tracer test II at location A2 at the juniper covered plot at Honey Creek. 
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Figure C3:  Dye behavior for tracer test II at location A3 at the juniper covered plot at Honey Creek. 
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Figure C4:  Dye behavior for tracer test II at location A4 at the juniper covered plot at Honey Creek. 
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Figure C5:  Dye behavior for tracer test II at location B1 at the juniper covered plot at Honey Creek.  
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Figure C6:  Dye behavior for tracer test II at location B2 at the juniper covered plot at Honey Creek.  
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Figure C7:  Dye behavior for tracer test II at location B3 at the juniper covered plot at Honey Creek.  
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Figure C8:  Dye behavior for tracer test II at location B4 at the juniper covered plot at Honey Creek.  
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Figure C9:  Dye behavior for tracer test II at location C1 at the juniper covered plot at Honey Creek.  
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Figure C10:  Dye behavior for tracer test II at location C2 at the juniper covered plot at Honey Creek.  
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Figure C11:  Dye behavior for tracer test II at location C3 at the juniper covered plot at Honey Creek.  
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Figure C12:  Dye behavior for tracer test II at location D1 at the juniper covered plot at Honey Creek.  
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Figure C13:  Dye behavior for tracer test II at location D2 at the juniper covered plot at Honey Creek.  
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Figure C14:  Dye behavior for tracer test II at location D3 at the juniper covered plot at Honey Creek.  
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Figure C15:  Dye behavior for tracer test II at location D4 at the juniper covered plot at Honey Creek. 
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